论文标题

纳米级生物医学工程中的机器学习

Machine Learning in Nano-Scale Biomedical Engineering

论文作者

Boulogeorgos, Alexandros-Apostolos A., Trevlakis, Stylianos E., Tegos, Sotiris A., Papanikolaou, Vasilis K., Karagiannidis, George K.

论文摘要

机器学习(ML)使生物医学系统能够通过对可用数据的建模来优化其性能,而无需对建模系统使用强有力的假设。尤其是在纳米级生物系统中,生成的数据集太庞大且复杂,无法在没有计算辅助的情况下进行精神解析,ML在分析和提取新见解,加速材料和结构发现以及设计经验以及支持纳米级通信和网络方面发挥了作用。然而,尽管做出了这些努力,但在纳米级生物医学工程中使用ML仍在某些领域探索,研究挑战在结构,材料设计和模拟,通信和信号处理以及生物医学应用等领域仍然开放。在本文中,我们回顾了有关在纳米级生物医学工程中使用ML的现有研究。更详细地,我们首先识别并讨论可以表达为ML问题的主要挑战。这些挑战分为上述三个主要类别。接下来,我们讨论用于对待上述挑战的最先进的ML方法。对于每种提出的方​​法,都特别强调其原理,应用和局限性。最后,我们以有见地的讨论结束了这篇文章,这些讨论揭示了研究差距并突出了未来的研究方向。

Machine learning (ML) empowers biomedical systems with the capability to optimize their performance through modeling of the available data extremely well, without using strong assumptions about the modeled system. Especially in nano-scale biosystems, where the generated data sets are too vast and complex to mentally parse without computational assist, ML is instrumental in analyzing and extracting new insights, accelerating material and structure discoveries, and designing experience as well as supporting nano-scale communications and networks. However, despite these efforts, the use of ML in nano-scale biomedical engineering remains still under-explored in certain areas and research challenges are still open in fields such as structure and material design and simulations, communications and signal processing, and bio-medicine applications. In this article, we review the existing research regarding the use of ML in nano-scale biomedical engineering. In more detail, we first identify and discuss the main challenges that can be formulated as ML problems. These challenges are classified into the three aforementioned main categories. Next, we discuss the state of the art ML methodologies that are used to countermeasure the aforementioned challenges. For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations. Finally, we conclude the article with insightful discussions, that reveal research gaps and highlight possible future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源