论文标题
罗宾边界条件的热绝缘材料中的优化问题
An optimization problem in thermal insulation with Robin boundary conditions
论文作者
论文摘要
我们研究有限的身体的热绝缘$ω\ subset \ mathbb {r}^n $。在规定的热源$ f \ geq 0 $下,我们考虑了$ω$和对流确定的环境之间的传热模型;在绝缘之前,这对应于罗宾边界条件。然后,身体被大小$ \ varepsilon> 0 $的厚度厚度的绝缘材料包围,其电导率也与$ \ varepsilon $成正比。这对应于少量绝缘材料的情况,具有出色的绝缘性能。然后,我们计算$γ$ - 能量功能$ f_ \ varepsilon $的限制,并证明这是一个功能性$ f $,其最小化器仍然满足椭圆形的PDES系统,该系统具有非统一的Robin边界条件,取决于$ω$的绝缘层的分布。在第二步中,我们研究了具有固定质量的绝缘材料的所有可能分布之间的热含量(衡量绝缘材料的好处)的最大化,并证明了几何特性的最佳上限。最终,我们证明了一个猜想,该猜想指出,被绝缘材料的均匀分布所包围的球最大化了热含量。
We study thermal insulating of a bounded body $Ω\subset \mathbb{R}^n$. Under a prescribed heat source $f\geq 0$, we consider a model of heat transfer between $Ω$ and the environment determined by convection; this corresponds, before insulation, to Robin boundary conditions. The body is then surrounded by a layer of insulating material of thickness of size $\varepsilon>0$, and whose conductivity is also proportional to $\varepsilon$. This corresponds to the case of a small amount of insulating material, with excellent insulating properties. We then compute the $Γ$-limit of the energy functional $F_\varepsilon$ and prove that this is a functional $F$ whose minimizers still satisfy an elliptic PDEs system with a non uniform Robin boundary condition depending on the distribution of insulating layer around $Ω$. In a second step we study the maximization of heat content (which measures the goodness of the insulation) among all the possible distributions of insulating material with fixed mass, and prove an optimal upper bound in terms of geometric properties. Eventually we prove a conjecture which states that the ball surrounded by a uniform distribution of insulating material maximizes the heat content.