论文标题

设计可转移的软传感器及其应用的新方法

A Novel Method For Designing Transferable Soft Sensors And Its Application

论文作者

Farahani, Hossein Shahabadi, Fatehi, Alireza, Nadali, Alireza, Shoorehdeli, Mahdi Aliyari

论文摘要

在本文中,提出了一种用于设计可转移软传感器的新方法。软传感是数据驱动方法在植物监测中的重要应用之一。尽管硬传感器可以轻松地用于各种植物中,但软传感器局限于其设计的特定植物,并且不能在新植物中使用,或者在同一植物的某些新工作条件中使用。在本文中,提出了解决数据驱动条件监控系统中的基本障碍的解决方案。数据驱动的方法遭受了以下事实:构造模型的数据的分布可能与应用模型的数据分布不同。最终导致模型准确性下降。我们提出了一种基于新的转移学习(TL)回归方法,称为域对抗神经网络回归(DANN-R),并将其用于设计可转移的软传感器。我们使用了从工业电厂的SCADA系统收集的数据来全面研究所提出的方法的功能。结果表明,所提出的可转移的软传感器可以成功适应新植物。

In this paper, a new approach is proposed for designing transferable soft sensors. Soft sensing is one of the significant applications of data-driven methods in the condition monitoring of plants. While hard sensors can be easily used in various plants, soft sensors are confined to the specific plant they are designed for and cannot be used in a new plant or even used in some new working conditions in the same plant. In this paper, a solution is proposed for this underlying obstacle in data-driven condition monitoring systems. Data-driven methods suffer from the fact that the distribution of the data by which the models are constructed may not be the same as the distribution of the data to which the model will be applied. This ultimately leads to the decline of models accuracy. We proposed a new transfer learning (TL) based regression method, called Domain Adversarial Neural Network Regression (DANN-R), and employed it for designing transferable soft sensors. We used data collected from the SCADA system of an industrial power plant to comprehensively investigate the functionality of the proposed method. The result reveals that the proposed transferable soft sensor can successfully adapt to new plants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源