论文标题
超低光学晶格中2D费米 - 哈伯德模型的量子多体模拟
Quantum Many-Body Simulations of the 2D Fermi-Hubbard Model in Ultracold Optical Lattices
论文作者
论文摘要
了解相关电子的量子多体状态是现代冷凝物理物理学的主要主题。鉴于Fermi-Hubbard模型(相关电子的原型)最近已在超低光学晶格中实现,因此具有控制的数值方法可以在掺杂时提供精确的有限温度结果,以直接与实验相比,这是非常可取的。在这里,我们演示了指数张量重构化组(XTRG)算法[Phys。 Rev. X 8,031082(2018)],配有独立的量子量蒙特卡洛(DQMC),为此目的提供了强大的工具组合。 XTRG提供了对密度矩阵的完整而准确的访问,从而提供了各种自旋和电荷相关性,低至Fermion Tunneling Energy量表很少的繁殖率的前所未有的低温。我们在半填充和有限掺杂时观察到了与超低费米的测量值,包括由于磁极的形成而导致自旋相关的标志反转行为,以及有吸引力的孔 - 孔和排斥的孔孔对,这些孔和替代性孔孔对负责特殊的堆积和抗抗抗药剂的抗强度行为。
Understanding quantum many-body states of correlated electrons is one main theme in modern condensed matter physics. Given that the Fermi-Hubbard model, the prototype of correlated electrons, has been recently realized in ultracold optical lattices, it is highly desirable to have controlled numerical methodology to provide precise finite-temperature results upon doping, to directly compare with experiments. Here, we demonstrate the exponential tensor renormalization group (XTRG) algorithm [Phys. Rev. X 8, 031082 (2018)], complemented with independent determinant quantum Monte Carlo (DQMC) offer a powerful combination of tools for this purpose. XTRG provides full and accurate access to the density matrix and thus various spin and charge correlations, down to unprecedented low temperature of few percents of the fermion tunneling energy scale. We observe excellent agreement with ultracold fermion measurements at both half-filling and finite-doping, including the sign-reversal behavior in spin correlations due to formation of magnetic polarons, and the attractive hole-doublon and repulsive hole-hole pairs that are responsible for the peculiar bunching and antibunching behavior of the antimoments.