论文标题

多发性硬化病变活性通过注意引导的两路PATH CNNS分割

Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided Two-Path CNNs

论文作者

Gessert, Nils, Krüger, Julia, Opfer, Roland, Ostwaldt, Ann-Christin, Manogaran, Praveena, Kitzler, Hagen H., Schippling, Sven, Schlaefer, Alexander

论文摘要

多发性硬化症是一种炎症自身免疫性脱髓鞘疾病,其特征是中枢神经系统病变。通常,磁共振成像(MRI)用于跟踪疾病进程。自动图像处理方法可用于细分病变并得出定量病变参数。到目前为止,方法集中在单个MRI扫描的病变细分上。但是,对于监测疾病进展,就两个时间点之间的新病变和扩大的病变而言,\ textit {病变活动}是至关重要的生物标志物。对于这个问题,已经提出了几种经典方法,例如使用差异量。尽管它们在单卷病变细分方面取得了成功,但深度学习方法对于病变活性分割仍然很少。在这项工作中,研究了卷积神经网络(CNN)从两个时间点进行病变活性分割。为此,对CNN进行了设计和评估,以不同方式将信息组合在一起。特别是,提出了具有注意力引导相互作用的两路架构,以在两个时间点的处理路径之间有效地交换。已经证明,基于深度学习的方法的表现优于经典方法,并且表明注意力引导的相互作用显着提高了性能。此外,注意模块产生了合理的注意图,具有掩盖效果,可抑制旧的无关病变。依靠病变的假阳性为26.4%,以74.2%的真实阳性率达到,这与间置性能没有显着差异。

Multiple sclerosis is an inflammatory autoimmune demyelinating disease that is characterized by lesions in the central nervous system. Typically, magnetic resonance imaging (MRI) is used for tracking disease progression. Automatic image processing methods can be used to segment lesions and derive quantitative lesion parameters. So far, methods have focused on lesion segmentation for individual MRI scans. However, for monitoring disease progression, \textit{lesion activity} in terms of new and enlarging lesions between two time points is a crucial biomarker. For this problem, several classic methods have been proposed, e.g., using difference volumes. Despite their success for single-volume lesion segmentation, deep learning approaches are still rare for lesion activity segmentation. In this work, convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points. For this task, CNNs are designed and evaluated that combine the information from two points in different ways. In particular, two-path architectures with attention-guided interactions are proposed that enable effective information exchange between the two time point's processing paths. It is demonstrated that deep learning-based methods outperform classic approaches and it is shown that attention-guided interactions significantly improve performance. Furthermore, the attention modules produce plausible attention maps that have a masking effect that suppresses old, irrelevant lesions. A lesion-wise false positive rate of 26.4% is achieved at a true positive rate of 74.2%, which is not significantly different from the interrater performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源