论文标题

用于精确解决方案的算法框架,并改善了最大加权独立集问题的近似值

An Algorithm Framework for the Exact Solution and Improved Approximation of the Maximum Weighted Independent Set Problem

论文作者

Sun, Kai

论文摘要

最大加权独立集(MWIS)问题,它考虑了一个图形,其权重分配给节点,并试图发现“最重”独立集,即一组具有最大总权重的节点,因此集合中的两个节点没有通过边缘连接。 MWIS问题出现在许多应用程序域中,包括资源受限的调度,错误校正编码,复杂的系统分析和优化以及通信网络。由于解决了MWIS问题是找到基于资源受限的过程计划和调度(PPS)问题的最佳解决方案的核心功能,因此具有“良好绩效”算法以解决MWIS问题是至关重要的。在本文中,我们提出了一种新型的混合启发式算法(NHHA)框架,以分裂和混合结构为MWIS问题产生最佳的可行解决方案。 NHHA框架被优化以最大程度地减少复发性。使用NHHA框架,我们还解决了所有最大独立集列表(AMISL)问题,可以将其视为MWIS问题的子问题。此外,使用NHHA框架快速近似算法的建筑MWIS算法是提高近似MWIS算法准确性的有效方法(例如,GWMIN和GWMIN2(Sakai等,2003))。对MWIS问题,精确的MWIS算法,AMISL算法,两种文献中的两种近似算法以及四种组成算法的算法进行了测试,并测试了基于图形的资源规范PPS问题的公式,以评估可伸缩性,精度,精度和稳健性。

The Maximum Weighted Independent Set (MWIS) problem, which considers a graph with weights assigned to nodes and seeks to discover the "heaviest" independent set, that is, a set of nodes with maximum total weight so that no two nodes in the set are connected by an edge. The MWIS problem arises in many application domains, including the resource-constrained scheduling, error-correcting coding, complex system analysis and optimization, and communication networks. Since solving the MWIS problem is the core function for finding the optimum solution of our novel graph-based formulation of the resource-constrained Process Planning and Scheduling (PPS) problem, it is essential to have "good-performance" algorithms to solve the MWIS problem. In this paper, we propose a Novel Hybrid Heuristic Algorithm (NHHA) framework in a divide-and-conquer structure that yields optimum feasible solutions to the MWIS problem. The NHHA framework is optimized to minimize the recurrence. Using the NHHA framework, we also solve the All Maximal Independent Sets Listing (AMISL) problem, which can be seen as the subproblem of the MWIS problem. Moreover, building composed MWIS algorithms that utilizing fast approximation algorithms with the NHHA framework is an effective way to improve the accuracy of approximation MWIS algorithms (e.g., GWMIN and GWMIN2 (Sakai et al., 2003)). Eight algorithms for the MWIS problem, the exact MWIS algorithm, the AMISL algorithm, two approximation algorithms from the literature, and four composed algorithms, are applied and tested for solving the graph-based formulation of the resource-constrained PPS problem to evaluate the scalability, accuracy, and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源