论文标题
视觉分析框架,用于审查降低维度的多元时间序列数据
A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction
论文作者
论文摘要
在许多现实世界中,数据驱动的问题解决问题涉及时间依赖性的多元数据,其中降低降低(DR)方法通常用于揭示数据的内在结构和特征。但是,通常将DR应用于单个时间点多变量或单变量时间序列的数据子集,从而导致需要手动检查和关联不同数据子集的DR结果。当尺寸的数量在时间点的数量或属性方面较大时,此手动任务就变得太乏味和不可行。在本文中,我们介绍了Multidr,这是一个新的DR框架,可实现时间相关的多元数据整体处理以提供数据的全面概述。在框架中,我们分两个步骤使用DR。当将数据的实例,时间点和属性视为3D阵列时,第一个DR步骤将数组的三个轴降低到两个轴,而第二dr步骤可视化数据中的数据。此外,通过与对比度学习方法和交互式可视化结合,我们的框架增强了分析师解释DR结果的能力。我们使用现实世界数据集通过四个案例研究来证明框架的有效性。
Data-driven problem solving in many real-world applications involves analysis of time-dependent multivariate data, for which dimensionality reduction (DR) methods are often used to uncover the intrinsic structure and features of the data. However, DR is usually applied to a subset of data that is either single-time-point multivariate or univariate time-series, resulting in the need to manually examine and correlate the DR results out of different data subsets. When the number of dimensions is large either in terms of the number of time points or attributes, this manual task becomes too tedious and infeasible. In this paper, we present MulTiDR, a new DR framework that enables processing of time-dependent multivariate data as a whole to provide a comprehensive overview of the data. With the framework, we employ DR in two steps. When treating the instances, time points, and attributes of the data as a 3D array, the first DR step reduces the three axes of the array to two, and the second DR step visualizes the data in a lower-dimensional space. In addition, by coupling with a contrastive learning method and interactive visualizations, our framework enhances analysts' ability to interpret DR results. We demonstrate the effectiveness of our framework with four case studies using real-world datasets.