论文标题

对抗雷达推断:反向跟踪,识别认知和设计智能干扰

Adversarial Radar Inference: Inverse Tracking, Identifying Cognition and Designing Smart Interference

论文作者

Krishnamurthy, Vikram, Pattanayak, Kunal, Gogineni, Sandeep, Kang, Bosung, Rangaswamy, Muralidhar

论文摘要

本文认为涉及认知雷达的三个相互关联的对抗性推理问题。我们首先讨论雷达的逆跟踪,以根据雷达的动作估算对手对我们的估计,并校准雷达的感应精度。其次,使用从微观经济学中揭示的偏好,我们制定了非参数测试,以确定认知雷达是否是信号处理约束的约束实用性最大化器。我们考虑两个雷达功能,即梁分配和波形设计,假定认知雷达可以最大化其效用并为雷达效用函数构建一个设定值的估计器。最后,我们讨论了如何在物理层级别上设计干涉,以使其迫使其更改其发射波形的雷达混淆。抽象水平范围从基于Wiener过滤器(脉冲/波形级别)的智能干扰设计,在跟踪级别的Kalman过滤器,并揭示了在系统级别识别效用最大化的偏好。

This paper considers three inter-related adversarial inference problems involving cognitive radars. We first discuss inverse tracking of the radar to estimate the adversary's estimate of us based on the radar's actions and calibrate the radar's sensing accuracy. Second, using revealed preference from microeconomics, we formulate a non-parametric test to identify if the cognitive radar is a constrained utility maximizer with signal processing constraints. We consider two radar functionalities, namely, beam allocation and waveform design, with respect to which the cognitive radar is assumed to maximize its utility and construct a set-valued estimator for the radar's utility function. Finally, we discuss how to engineer interference at the physical layer level to confuse the radar which forces it to change its transmit waveform. The levels of abstraction range from smart interference design based on Wiener filters (at the pulse/waveform level), inverse Kalman filters at the tracking level and revealed preferences for identifying utility maximization at the systems level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源