论文标题

从观察框架中学习:用于抓握释放家庭操作的单发机器人教学

A Learning-from-Observation Framework: One-Shot Robot Teaching for Grasp-Manipulation-Release Household Operations

论文作者

Wake, Naoki, Arakawa, Riku, Yanokura, Iori, Kiyokawa, Takuya, Sasabuchi, Kazuhiro, Takamatsu, Jun, Ikeuchi, Katsushi

论文摘要

预计家用机器人将执行各种操纵操作,以了解任务的目的。为此,理想的机器人应用应为非专家提供现场机器人教学框架。在这里,我们提出了一个学习从学习框架(LFO)框架(LFO)框架,用于掌握释放式家庭运营(GMR-operations)。该框架将人类的演示映射到通过一声教学的预定义任务模型。每个任务模型都包含有关与人类姿势有关的几何约束和低级知识的高级知识。关键思想是设计一个任务模型,即1)涵盖各种GMR操作,2)包括人类姿势以实现任务。我们通过使用真实机器人测试操作LFO系统来验证框架的适用性。此外,我们通过分析家庭操作的在线视频来量化任务模型的覆盖范围。在一声机器人教学的背景下,这项研究的贡献是一个框架,即1)涵盖了各种GMR操作,以及2)在操作过程中模仿人类的姿势。

A household robot is expected to perform various manipulative operations with an understanding of the purpose of the task. To this end, a desirable robotic application should provide an on-site robot teaching framework for non-experts. Here we propose a Learning-from-Observation (LfO) framework for grasp-manipulation-release class household operations (GMR-operations). The framework maps human demonstrations to predefined task models through one-shot teaching. Each task model contains both high-level knowledge regarding the geometric constraints and low-level knowledge related to human postures. The key idea is to design a task model that 1) covers various GMR-operations and 2) includes human postures to achieve tasks. We verify the applicability of our framework by testing an operational LfO system with a real robot. In addition, we quantify the coverage of the task model by analyzing online videos of household operations. In the context of one-shot robot teaching, the contribution of this study is a framework that 1) covers various GMR-operations and 2) mimics human postures during the operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源