论文标题
Rademacher型定理和sobolev-to-lipschitz属性,用于强烈的本地差异空间
Rademacher-type Theorems and Sobolev-to-Lipschitz Properties for Strongly Local Dirichlet Spaces
论文作者
论文摘要
我们广泛地讨论了可能没有方形磁场运算符的强大本地迪尔奇特空间上的固有距离,以实现广义的内在距离。我们提出了许多非平滑和无限维度的例子。作为一种应用,我们证明了相对于一大类强烈局部迪尔图的给定距离函数的整体瓦拉丹短期渐近造。
We extensively discuss the Rademacher and Sobolev-to-Lipschitz properties for generalized intrinsic distances on strongly local Dirichlet spaces possibly without square field operator. We present many non-smooth and infinite-dimensional examples. As an application, we prove the integral Varadhan short-time asymptotic with respect to a given distance function for a large class of strongly local Dirichlet forms.