论文标题

在类似行业活动中的人类运动可操作性的分析和转移

Analysis and Transfer of Human Movement Manipulability in Industry-like Activities

论文作者

Jaquier, Noémie, Rozo, Leonel, Calinon, Sylvain

论文摘要

人类在执行不同类型的工业任务时表现出杰出的学习,计划和适应能力。鉴于对任务要求的一些知识,人类能够预期执行特定技能,以计划其四肢运动。例如,当操作员需要在表面上钻一个孔时,其四肢的姿势会有所不同,以确保与钻井任务规格兼容的稳定配置,例如施加一支与表面正交的力。因此,我们有兴趣分析工业活动中的人类武器运动模式。为此,我们对所谓的可操作性椭圆形进行了分析,该椭圆形占据了姿势依赖性的能力,可以沿不同的任务方向进行运动和发挥力。通过对人类运动的操纵性的彻底分析,我们发现椭圆形的形状是任务依赖性的,并且通常提供了与经典可操作性指数有关的人类运动的更多信息。此外,我们展示了如何通过学习概率模型并采用可操作性跟踪控制器来转移到机器人,该控制器根据预定义的控制层次结构对任务计划和执行。

Humans exhibit outstanding learning, planning and adaptation capabilities while performing different types of industrial tasks. Given some knowledge about the task requirements, humans are able to plan their limbs motion in anticipation of the execution of specific skills. For example, when an operator needs to drill a hole on a surface, the posture of her limbs varies to guarantee a stable configuration that is compatible with the drilling task specifications, e.g. exerting a force orthogonal to the surface. Therefore, we are interested in analyzing the human arms motion patterns in industrial activities. To do so, we build our analysis on the so-called manipulability ellipsoid, which captures a posture-dependent ability to perform motion and exert forces along different task directions. Through thorough analysis of the human movement manipulability, we found that the ellipsoid shape is task dependent and often provides more information about the human motion than classical manipulability indices. Moreover, we show how manipulability patterns can be transferred to robots by learning a probabilistic model and employing a manipulability tracking controller that acts on the task planning and execution according to predefined control hierarchies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源