论文标题

机车:当地的对比表示学习

LoCo: Local Contrastive Representation Learning

论文作者

Xiong, Yuwen, Ren, Mengye, Urtasun, Raquel

论文摘要

深神经网通常执行端到端反向传播以学习权重,该过程在跨层的重量更新步骤中产生同步约束,并且在生物学上不可能。无监督的对比表示学习的最新进展表明,学习算法是否也可以在本地进行,即下层的更新并不直接取决于上层的计算。尽管贪婪的信息分别以当地目标为单独学习每个块,但我们发现它始终损害最先进的无监督对比学习算法的读数准确性,这可能是由于贪婪的目标以及梯度隔离。在这项工作中,我们发现,通过重叠的本地块彼此堆叠,我们有效地增加了解码器的深度,并允许上层块隐式将反馈发送到较低的块。这种简单的设计缩小了本地学习和端到端对比度学习算法之间的性能差距。除了标准Imagenet实验外,我们还使用读取功能直接显示了复杂下游任务(例如对象检测和实例分割)的结果。

Deep neural nets typically perform end-to-end backpropagation to learn the weights, a procedure that creates synchronization constraints in the weight update step across layers and is not biologically plausible. Recent advances in unsupervised contrastive representation learning point to the question of whether a learning algorithm can also be made local, that is, the updates of lower layers do not directly depend on the computation of upper layers. While Greedy InfoMax separately learns each block with a local objective, we found that it consistently hurts readout accuracy in state-of-the-art unsupervised contrastive learning algorithms, possibly due to the greedy objective as well as gradient isolation. In this work, we discover that by overlapping local blocks stacking on top of each other, we effectively increase the decoder depth and allow upper blocks to implicitly send feedbacks to lower blocks. This simple design closes the performance gap between local learning and end-to-end contrastive learning algorithms for the first time. Aside from standard ImageNet experiments, we also show results on complex downstream tasks such as object detection and instance segmentation directly using readout features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源