论文标题

通过智能照明控制室内工厂的智能照明控制最小化电力成本

Minimizing Electricity Cost through Smart Lighting Control for Indoor Plant Factories

论文作者

Lork, Clement, Cubillas, Michael, Ng, Benny Kai Kiat, Yuen, Chau, Tan, Matthew

论文摘要

智能植物工厂结合了传感技术,执行器和控制算法以自动化流程,降低了生产成本,同时改善农作物的收益多次。本文在暴露于红色和蓝色的发光二极管(LED)园艺照明时,调查了生菜(Lactuca sativa)的生长。基于K-均值聚类的图像分割方法用于确定在每个生长阶段的植物的大小,以及在进料前网络中建模的植物的生长。最后,提出了一种基于植物生长模型的优化算法,以找到有关动态电价生长生菜的最佳照明计划。遗传算法用于寻找优化问题的解决方案。与模拟设置中的基线相比,遗传算法提出的时间表可以在节省40-52%的能源成本之间,叶片面积增加6%。

Smart plant factories incorporate sensing technology, actuators and control algorithms to automate processes, reducing the cost of production while improving crop yield many times over that of traditional farms. This paper investigates the growth of lettuce (Lactuca Sativa) in a smart farming setup when exposed to red and blue light-emitting diode (LED) horticulture lighting. An image segmentation method based on K-means clustering is used to identify the size of the plant at each stage of growth, and the growth of the plant modelled in a feed forward network. Finally, an optimization algorithm based on the plant growth model is proposed to find the optimal lighting schedule for growing lettuce with respect to dynamic electricity pricing. Genetic algorithm was utilized to find solutions to the optimization problem. When compared to a baseline in a simulation setting, the schedules proposed by the genetic algorithm can achieved between 40-52% savings in energy costs, and up to a 6% increase in leaf area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源