论文标题

加强接地的动作转化,用于SIM到现实转移

Reinforced Grounded Action Transformation for Sim-to-Real Transfer

论文作者

Karnan, Haresh, Desai, Siddharth, Hanna, Josiah P., Warnell, Garrett, Stone, Peter

论文摘要

机器人可以学会在模拟中完成复杂的任务,但是由于模拟器缺陷(现实差距),学到的行为通常无法很好地转移到现实世界中。一些现有的SIM到现实问题的解决方案,例如接地动作转换(GAT),使用少量的现实经验通过接地模拟器来最大程度地减少现实差距。尽管在某些情况下非常有效,但GAT在使用复杂功能近似技术来建模策略的问题上并不强大。在本文中,我们引入了增强的基础动作转换(RGAT),这是一种使用加固学习(RL)的新型SIM到现实技术,不仅在模拟中更新目标策略,还可以执行接地步骤本身。这种新颖的配方允许在接地步骤中进行端到端训练,与GAT相比,该步骤可产生更好的接地模拟器。此外,我们在几个Mujoco领域的实验表明我们的方法可以成功转移使用神经网络建模的策略。

Robots can learn to do complex tasks in simulation, but often, learned behaviors fail to transfer well to the real world due to simulator imperfections (the reality gap). Some existing solutions to this sim-to-real problem, such as Grounded Action Transformation (GAT), use a small amount of real-world experience to minimize the reality gap by grounding the simulator. While very effective in certain scenarios, GAT is not robust on problems that use complex function approximation techniques to model a policy. In this paper, we introduce Reinforced Grounded Action Transformation(RGAT), a new sim-to-real technique that uses Reinforcement Learning (RL) not only to update the target policy in simulation, but also to perform the grounding step itself. This novel formulation allows for end-to-end training during the grounding step, which, compared to GAT, produces a better grounded simulator. Moreover, we show experimentally in several MuJoCo domains that our approach leads to successful transfer for policies modeled using neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源