论文标题

卡门族在M矮人周围寻找系外行星 - 确定目标恒星基本参数的深度学习方法

The CARMENES search for exoplanets around M dwarfs -- A deep learning approach to determine fundamental parameters of target stars

论文作者

Passegger, V. M., Bello-García, A., Ordieres-Meré, J., Caballero, J. A., Schweitzer, A., González-Marcos, A., Ribas, I., Reiners, A., Quirrenbach, A., Amado, P. J., Azzaro, M., Bauer, F. F., Béjar, V. J. S., Cortés-Contreras, M., Dreizler, S., Hatzes, A. P., Henning, Th., Jeffers, S. V., Kaminski, A., Kürster, M., Lafarga, M., Marfil, E., Montes, D., Morales, J. C., Nagel, E., Sarro, L. M., Solano, E., Tabernero, H. M., Zechmeister, M.

论文摘要

现有的和即将到来的仪器正在收集大量的天体数据,这些数据需要有效,快速的分析技术。我们提出了深层神经网络结构,以分析高分辨率恒星光谱并预测恒星参数,例如有效温度,表面重力,金属性和旋转速度。通过这项研究,我们首先证明了深神经网络从合成训练集中恢复出色的参数的能力。其次,我们分析了该方法在观察到的光谱上的应用以及合成间隙(即观察到的和合成光谱之间的差异)对恒星参数,它们的误差及其精度的影响。我们的卷积网络在不同光学和近红外波长区域的合成凤凰层光谱进行了训练。对于四个恒星参数中的每个参数,$ t _ {\ rm eff} $,$ \ log {g} $,[m/h]和$ v \ sin {i} $,我们构建了一个神经网络模型来独立估算每个参数。然后,我们将此方法应用于50 m矮人,并使用卡门群(Calar Alto高分辨率搜索具有近乎边红外和光学梯形光谱仪)的M矮人搜索,它们在可见的(520-960 nm)和近传范围内(520-960 nm)和9660 NM(960 nm)的范围(960 nm)(520-960 nm)(960 nm)。我们的结果与这些恒星的文献值进行了比较。它们在错误中大多表现出良好的一致性,但在某些情况下也表现出很大的偏差,尤其是对于[M/H],指出了更好地理解合成间隙的重要性。

Existing and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, $T_{\rm eff}$, $\log{g}$, [M/H], and $v \sin{i}$, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs), which operates in the visible (520-960 nm) and near-infrared wavelength range (960-1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源