论文标题
优化的双曲微通道,用于生物粒子的机械表征
Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles
论文作者
论文摘要
粘性流中生物粒子的运输表现出各种动力学行为,例如形态学转变,复杂的取向动力学或变形。在控制良好的流动下表征这种复杂的行为是了解生物颗粒的微观机械特性以及其悬浮液的流变特性的关键。虽然在微流体设备中生成简单剪切流的区域相对简单,因此产生的紧张流,其中应变速率保持恒定的恒定时间足够长,以观察物体的形态演化远非琐碎。在这项工作中,我们提出了一种创新的方法,基于对微流体收敛变化通道的优化设计,并与基于显微镜的跟踪方法相结合,以表征在均质过力流下各个生物粒子的动态行为。跟踪算法结合了由外部信号控制的电动阶段和显微镜成像系统,使我们能够遵循具有高质量图像的长距离运输的单个生物粒子。我们通过实验证明了数值优化的微通道沿设备中心线提供线性速度流梯度的能力,从而可以扩展连续的均匀伸长和压缩区域。我们选择了三个测试用例(DNA,肌动蛋白丝和蛋白质聚集体),以突出我们方法研究生物学世界中具有广泛尺寸,特征和相关性能的物体动力学的能力。
The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating the dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.