论文标题

Milnor的同一圆锥形和谐波图

Milnor's isospectral tori and harmonic maps

论文作者

Hamilton, Mark J. D.

论文摘要

一个众所周知的问题询问Riemannian歧管$(M,G)$上的Laplacian的频谱是否确定了Riemannian Metric $ g $ to Isometry。一个类似的问题是,从给定的Riemannian歧管$(σ,h)$到$ m $的所有谐波图的能源是否确定目标空间上的Riemannian指标。在扁平托里之间的谐波图的情况下,我们考虑了这个问题。特别是,我们表明,米尔诺(Milnor)发现的两个同一,非等法$ 16 $二维的扁平摩托车无法通过谐波地图的能量谱从$ d $ d $ d $二维的flat tori($ d \ leq 3 $)区分,但可以以某些Flat tori为$ d \ egeq 4 $区分。这与Siegel Theta系列的属性有关,以$ D $ $ D $相关的$ 16 $维晶格有关。

A well-known question asks whether the spectrum of the Laplacian on a Riemannian manifold $(M,g)$ determines the Riemannian metric $g$ up to isometry. A similar question is whether the energy spectrum of all harmonic maps from a given Riemannian manifold $(Σ,h)$ to $M$ determines the Riemannian metric on the target space. We consider this question in the case of harmonic maps between flat tori. In particular, we show that the two isospectral, non-isometric $16$-dimensional flat tori found by Milnor cannot be distinguished by the energy spectrum of harmonic maps from $d$-dimensional flat tori for $d\leq 3$, but can be distinguished by certain flat tori for $d\geq 4$. This is related to a property of the Siegel theta series in degree $d$ associated to the $16$-dimensional lattices in Milnor's example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源