论文标题

卫星图像快速超级分辨率的深层和不深度方法的融合

Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of Satellite Images

论文作者

Nayak, Gaurav Kumar, Jain, Saksham, Babu, R Venkatesh, Chakraborty, Anirban

论文摘要

在新兴的商业太空行业中,获得低成本卫星图像的访问大幅增加。卫星图像的价格取决于传感器质量和重新访问速率。这项工作建议通过超分辨率(SR)提高图像质量之间的图像质量和价格之间的差距。最近,已经提出了许多深层SR技术来增强卫星图像。但是,这些方法都没有使用区域级上下文信息,对图像中的每个区域赋予了同等的重要性。这与大多数最先进的SR方法都是复杂且繁琐的深层模型的事实,处理非常大的卫星图像所花费的时间可能是不切实际的。我们建议通过设计一个SR框架来应对这一挑战,该SR框架分析了低分辨率图像的每个贴片上的区域信息内容,并明智地选择使用更多的计算复杂的深层模型来对图像上的超级分解更富含结构的区域,同时在非超级区域使用较少资源的非深度非深度非深度非深度方法。通过对大型卫星图像进行的大量实验,我们在推理时间上显示了大幅下降,同时在PSNR,MSE和SSIM等多种评估措施中实现了与现有深层SR方法相似的性能。

In the emerging commercial space industry there is a drastic increase in access to low cost satellite imagery. The price for satellite images depends on the sensor quality and revisit rate. This work proposes to bridge the gap between image quality and the price by improving the image quality via super-resolution (SR). Recently, a number of deep SR techniques have been proposed to enhance satellite images. However, none of these methods utilize the region-level context information, giving equal importance to each region in the image. This, along with the fact that most state-of-the-art SR methods are complex and cumbersome deep models, the time taken to process very large satellite images can be impractically high. We, propose to handle this challenge by designing an SR framework that analyzes the regional information content on each patch of the low-resolution image and judiciously chooses to use more computationally complex deep models to super-resolve more structure-rich regions on the image, while using less resource-intensive non-deep methods on non-salient regions. Through extensive experiments on a large satellite image, we show substantial decrease in inference time while achieving similar performance to that of existing deep SR methods over several evaluation measures like PSNR, MSE and SSIM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源