论文标题

跨域面部表达识别的对抗图表示适应

Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition

论文作者

Xie, Yuan, Chen, Tianshui, Pu, Tao, Wu, Hefeng, Lin, Liang

论文摘要

由于主观注释过程和不同的收集条件,不同面部表达识别(FER)数据集之间的数据不一致和偏见是不可避免的。最近的作品诉诸于对抗性机制,这些机制学习域不变特征以减轻域的转移。但是,这些作品大多数都集中在整体功能适应上,并且它们忽略了在不同数据集中更可传输的本地功能。此外,本地特征具有更详细和更具歧视性的内容来表达识别,因此整合局部特征可能会实现细粒度的适应性。在这项工作中,我们提出了一种新颖的对抗图表示适应性(AGRA)框架,该框架将图表表示传播与对抗性学习,以进行跨域的整体局部特征共同适应。为了实现这一目标,我们首先构建一个图形,以将每个域内的整体区域和局部区域相关联,以及另一个图形,以将这些区域跨不同域关联。然后,我们了解每个域的每级统计分布,并从输入图像中提取整体位置特征,以初始化相应的图形节点。最后,我们介绍了两个堆叠的图形卷积网络,以在每个域内传播整体本地特征,以探索它们的相互作用以及跨不同域的整体本地特征共同适应。通过这种方式,Agra框架可以自适应地学习细粒域不变特征,从而促进跨域的表达识别。我们对几个流行的基准进行了广泛而公平的实验,并表明所提出的AGRA框架比以前的最先进方法实现了卓越的性能。

Data inconsistency and bias are inevitable among different facial expression recognition (FER) datasets due to subjective annotating process and different collecting conditions. Recent works resort to adversarial mechanisms that learn domain-invariant features to mitigate domain shift. However, most of these works focus on holistic feature adaptation, and they ignore local features that are more transferable across different datasets. Moreover, local features carry more detailed and discriminative content for expression recognition, and thus integrating local features may enable fine-grained adaptation. In this work, we propose a novel Adversarial Graph Representation Adaptation (AGRA) framework that unifies graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation. To achieve this, we first build a graph to correlate holistic and local regions within each domain and another graph to correlate these regions across different domains. Then, we learn the per-class statistical distribution of each domain and extract holistic-local features from the input image to initialize the corresponding graph nodes. Finally, we introduce two stacked graph convolution networks to propagate holistic-local feature within each domain to explore their interaction and across different domains for holistic-local feature co-adaptation. In this way, the AGRA framework can adaptively learn fine-grained domain-invariant features and thus facilitate cross-domain expression recognition. We conduct extensive and fair experiments on several popular benchmarks and show that the proposed AGRA framework achieves superior performance over previous state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源