论文标题
$ n(κ)$的分类 - 与$ \ MATHCAL {T} $ curvature Tensor联系公制歧管
A classification of $ N(κ)$-contact metric manifolds with $ \mathcal{T} $-curvature tensor
论文作者
论文摘要
在本文中,我们提出了$ n(κ)$的分类 - 与$ \ Mathcal {t} $ curvature Tensor上使用某些特殊平坦条件的联系公制歧管。我们检查$ \ MATHCAL {T} $ - flat,Quasi-quasi {t} $ - flat,$之一,$之一$和$ \ MATHCAL {T}(ξ,x).s = 0 $,用于Riemannian曲率张量$ r $和RICCI曲率张量$ S $。因此,我们获得了$ N(κ)$ - 接触度量歧管的分类。
In this paper, we present a classification of $ N(κ)$-contact metric manifolds with using some special flatness conditions on $ \mathcal{T} $-curvature tensor. We examine $\mathcal{T}$-flat, quasi-$\mathcal{T}$-flat, $ ξ$-$\mathcal{T}$-flat and $ φ$-$\mathcal{T}$-flat $ N(κ)$-contact metric manifolds .Also,we consider the conditions $ \mathcal{T}(ξ,X).R=0 $ and $ \mathcal{T}(ξ,X).S=0 $ for the Riemannian curvature tensor $ R $ and Ricci curvature tensor $ S $. Thus, we obtain a classification of $ N(κ)$-contact metric manifolds.