论文标题

金融中的量子与经典生成建模

Quantum versus Classical Generative Modelling in Finance

论文作者

Coyle, Brian, Henderson, Maxwell, Le, Justin Chan Jin, Kumar, Niraj, Paini, Marco, Kashefi, Elham

论文摘要

在短期内找到量子计算机的具体用例仍然是一个空旷的问题,机器学习通常被吹捧为将受量子技术影响的第一个字段之一。在这项工作中,我们调查并比较了量子模型与经典模型的功能,以实现机器学习中生成建模的任务。我们使用一个由相关货币对组成的现实世界金融数据集,并比较了两个模型学习所得分配的能力 - 限制性的玻尔兹曼机器和量子电路出生的机器。我们提供了广泛的数值结果,表明模拟的出生机器在此任务中始终与Boltzmann机器的性能相匹配,并在模型尺度上演示了出色的性能。我们使用Rigetti Forest平台对模拟和物理量子芯片进行实验,并且还能够部分训练迄今为止在量子硬件上出生的量子电路的最大实例。最后,通过研究训练源机器的纠缠能力,我们发现纠缠通常在问题实例中发挥作用,该实例证明了比Boltzmann机器具有优势。

Finding a concrete use case for quantum computers in the near term is still an open question, with machine learning typically touted as one of the first fields which will be impacted by quantum technologies. In this work, we investigate and compare the capabilities of quantum versus classical models for the task of generative modelling in machine learning. We use a real world financial dataset consisting of correlated currency pairs and compare two models in their ability to learn the resulting distribution - a restricted Boltzmann machine, and a quantum circuit Born machine. We provide extensive numerical results indicating that the simulated Born machine always at least matches the performance of the Boltzmann machine in this task, and demonstrates superior performance as the model scales. We perform experiments on both simulated and physical quantum chips using the Rigetti forest platform, and also are able to partially train the largest instance to date of a quantum circuit Born machine on quantum hardware. Finally, by studying the entanglement capacity of the training Born machines, we find that entanglement typically plays a role in the problem instances which demonstrate an advantage over the Boltzmann machine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源