论文标题

入侵和退缩的锋利的行进波

Invading and receding sharp-fronted travelling waves

论文作者

El-Hachem, Maud, McCue, Scott W, Simpson, Matthew J

论文摘要

生物学入侵,这种侵袭者通常使用基于经典Fisher-kpp模型的偏微分方程(PDE)模型对流动性和增生性个体导致进入空置区域的移动前线。尽管Fisher-KPP模型和扩展已成功地用于建模一系列侵入性现象,包括生态和细胞侵袭,但经常对Fisher的限制 - KPP模型,它不能用于模拟生物衰退,而随着时间的流逝,人群人群的空间范围降低。在这项工作中,我们研究了\ textIt {Fisher-stefan}模型,这是Fisher-kpp模型的概括,通过将Fisher-kpp模型重新设计为移动边界问题,获得的Fisher-KPP模型。非二维Fisher(Stefan模型)仅涉及一个参数$κ$,它将移动边界处的密度前端的形状与相关行驶波的速度($ c $)联系起来。使用数值模拟,相位平面和扰动分析,我们构建了Fisher-Stefan模型的近似解决方案,以缓慢入侵和缓慢退缩波,以及迅速退缩的行进波。这些近似值使我们能够确定$ C $和$κ$之间的关系,因此通常可以使用$ C $的实验估计来提供未知参数$κ$的估计。有趣的是,当我们重新诠释Fisher-kpp模型作为移动边界问题时,许多无视经典Fisher的特征 - KPP相位平面采用了新的解释,因为通常不考虑使用$ C <2 $的行驶WAVES解决方案。这意味着我们对Fisher-Stefan模型的分析既具有实际价值,也具有固有的数学价值。

Biological invasion, whereby populations of motile and proliferative individuals lead to moving fronts that invade into vacant regions, are routinely studied using partial differential equation (PDE) models based upon the classical Fisher--KPP model. While the Fisher--KPP model and extensions have been successfully used to model a range of invasive phenomena, including ecological and cellular invasion, an often--overlooked limitation of the Fisher--KPP model is that it cannot be used to model biological recession where the spatial extent of the population decreases with time. In this work we study the \textit{Fisher--Stefan} model, which is a generalisation of the Fisher--KPP model obtained by reformulating the Fisher--KPP model as a moving boundary problem. The nondimensional Fisher--Stefan model involves just one single parameter, $κ$, which relates the shape of the density front at the moving boundary to the speed of the associated travelling wave, $c$. Using numerical simulation, phase plane and perturbation analysis, we construct approximate solutions of the Fisher--Stefan model for both slowly invading and slowly receding travelling waves, as well as for rapidly receding travelling waves. These approximations allow us to determine the relationship between $c$ and $κ$ so that commonly--reported experimental estimates of $c$ can be used to provide estimates of the unknown parameter $κ$. Interestingly, when we reinterpret the Fisher--KPP model as a moving boundary problem, many disregarded features of the classical Fisher--KPP phase plane take on a new interpretation since travelling waves solutions with $c < 2$ are not normally considered. This means that our analysis of the Fisher--Stefan model has both practical value and an inherent mathematical value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源