论文标题

COVID-19的可解释序列学习预测

Interpretable Sequence Learning for COVID-19 Forecasting

论文作者

Arik, Sercan O., Li, Chun-Liang, Yoon, Jinsung, Sinha, Rajarishi, Epshteyn, Arkady, Le, Long T., Menon, Vikas, Singh, Shashank, Zhang, Leyou, Yoder, Nate, Nikoltchev, Martin, Sonthalia, Yash, Nakhost, Hootan, Kanal, Elli, Pfister, Tomas

论文摘要

我们提出了一种新颖的方法,该方法将机器学习纳入隔离疾病建模以预测Covid-19的进展。我们的模型可以通过设计来解释,因为它明确显示了不同的隔室的发展方式,并且它使用可解释的编码器来融合协变量并提高性能。解释性对于确保模型的预测是流行病学家可信的,并灌输对政策制定者和医疗机构等最终用户的信心。我们的模型可以应用于不同的地理决议,在这里我们将其展示给美国的州和县。我们表明,与最先进的替代方案相比,我们的模型提供了更准确的预测,在整个美国的指标中,它提供了更准确的预测,并且提供了定性有意义的解释性见解。最后,我们根据县内的亚组分布分析了不同子组的模型的性能。

We propose a novel approach that integrates machine learning into compartmental disease modeling to predict the progression of COVID-19. Our model is explainable by design as it explicitly shows how different compartments evolve and it uses interpretable encoders to incorporate covariates and improve performance. Explainability is valuable to ensure that the model's forecasts are credible to epidemiologists and to instill confidence in end-users such as policy makers and healthcare institutions. Our model can be applied at different geographic resolutions, and here we demonstrate it for states and counties in the United States. We show that our model provides more accurate forecasts, in metrics averaged across the entire US, than state-of-the-art alternatives, and that it provides qualitatively meaningful explanatory insights. Lastly, we analyze the performance of our model for different subgroups based on the subgroup distributions within the counties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源