论文标题
使用时间集成光谱技术研究瞬态等离子体流
Study of transient plasma stream using Time-Integrated Spectroscopic Technique
论文作者
论文摘要
进行时间整合的光谱测量值以表征在同轴脉冲等离子体加速器中产生的瞬时等离子体流。该方法允许随时间估计不同的等离子体参数及其演变。它还提供有关血浆光谱排放中不同激发态存在的信息。使用Argon作为放电介质,从Stark扩大线轮廓估计的电子密度给出了峰值$ \ sim 5 \ times 10^{21} M^{ - 3} $,以15 kV的排放电压为15 kV,并且使用Doppler Maghter Manth Mather Manth Mather Manth Mather Mage Mage sim $ \ sim(22 + 5)。假设P-LTE模型,使用Boltzmann图方法发现电子激发温度为$ \ sim 0.88 $ eV。通过调整触发器中的延迟时间,研究了等离子体流的时间演变及其特性变化。对不同光谱线的分析表明,AR II的某些亚稳态存在具有很长的寿命。在不同的时间范围内,观察到不同AR II转变向亚稳态和非量化较低水平的演变。时间进化研究表明,电子密度从$ 1.96 \ times 10^{21} m^{ - 3} $减少到$ 1.23 \ times 10^{20} {20} m^{ - 3} $ at $300μs$,启动血浆形成后。观察到激发温度从0.86 eV降低到0.72 eV,直到$250μs$,然后再次上升至0.77 eV,以$300μs$
Time integrated spectroscopic measurements are carried out to characterize transient plasma stream produced in a coaxial pulsed plasma accelerator. This method allows the estimation of different plasma parameters and its evolution with time. It also provides information on the existence of different excited states from the spectral emissions of plasma. Using Argon as the discharge medium, the electron density estimated from Stark broadened line profiles gives a peak value $\sim 5 \times 10^{21} m^{-3}$ at a discharge voltage of 15 kV and the flow velocity of the plasma stream is measured to be $\sim (22 + 5)$ Km using Doppler shift method. Assuming p-LTE model, the electron excitation temperature is found to be $\sim 0.88$ eV using Boltzmann plot method. A temporal evolution of the plasma stream and its characteristic variation is studied from a time of $50 μs-300 μs$ in steps of $50 μs$ by adjusting delay time in the triggering. Analysis of different spectral lines shows the existence of some metastable states of Ar II having a long lifetime. The evolution of different Ar II transitions to metastable and non-metastable lower levels is observed for different time frame. The temporal evolution study shows a decrease in electron density from $1.96 \times 10^{21} m^{-3}$ to $1.23 \times 10^{20} m^{-3}$ at $300 μs$ after the initiation of plasma formation. A decrease in excitation temperature from 0.86 eV to 0.72 eV is observed till $250 μs$ and then again rises to 0.77 eV at $300 μs$