论文标题
Quiver Chern-Simons-Matter理论的确切结果和Schur扩展
Exact results and Schur expansions in quiver Chern-Simons-matter theories
论文作者
论文摘要
我们研究了三个球体上的几种Quiver Chern-Simons-MATTER理论,将矩阵模型公式与Mordell的积分,计算分区函数和检查二元性结合在一起。我们还考虑了ABJ(M)理论中的Wilson循环,区分典型(长)和非典型(简短)表示,并专注于前者。利用超对称Schur多项式的Berele-regev分解,我们表达了Wilson Loops的期望值,该循环的期望值是在Sphere上的$ U(N)$ Chern-Simons理论的两个分解副本的总和。然后,我们使用Cauchy身份来研究许多箭量Chern-Simons-Matter模型的分区函数,结果被解释为参数中的扰动扩展,$ t_j = -e^{2πm_j} $,其中$ m_j $是质量。通过论文,我们结合了不同的概括,例如真实质量和/或fayet-iliopoulos参数的变形,重力双重偶数中的罗马人质量和伴随物质的考虑。
We study several quiver Chern-Simons-matter theories on the three-sphere, combining the matrix model formulation with a systematic use of Mordell's integral, computing partition functions and checking dualities. We also consider Wilson loops in ABJ(M) theories, distinguishing between typical (long) and atypical (short) representations and focusing on the former. Using the Berele-Regev factorization of supersymmetric Schur polynomials, we express the expectation value of the Wilson loops in terms of sums of observables of two factorized copies of $U(N)$ pure Chern-Simons theory on the sphere. Then, we use the Cauchy identity to study the partition functions of a number of quiver Chern-Simons-matter models and the result is interpreted as a perturbative expansion in the parameters $t_j = - e^{2 πm_j}$, where $m_j$ are the masses. Through the paper, we incorporate different generalizations, such as deformations by real masses and/or Fayet-Iliopoulos parameters, the consideration of a Romans mass in the gravity dual, and adjoint matter.