论文标题

维度基准的一些新结果

Some new results on dimension datum

论文作者

Yu, Jun

论文摘要

在本文中,我们展示了有关维度基准的三个新结果。首先,对于两个子组,$ h_ {1} $($ \ cong u(2n+1)$)和$ h_ {2} $($ \ cong sp(n)\ times so(2n+2)$(4n+2)$ $(τ_1,τ_2)\ in \ hat {h_ {1}} \ times \ hat {h_ {2}} $,这样,$ \ mathscr {d} _ {h_1,τ_1,τ_1} = \ mathscr {d} _ {d} _ {h_2} _ {通过此,我们构建了同一偏僻的遗传学矢量束的例子。其次,我们表明:$τ$ - 二维数据的一维紧凑型谎言组$ h $的一维表示,确定同构的图像从$ h $到给定的紧凑型谎言组$ g $。最后,我们通过允许Riemannian Metric $ m $变化来改善一套正常均匀空间$(g/h,m)$的紧凑性结果,但对$ g $是半imimple的约束。

In this paper we show three new results concerning dimension datum. Firstly, for two subgroups $H_{1}$($\cong U(2n+1)$) and $H_{2}$($\cong Sp(n)\times SO(2n+2)$) of $SU(4n+2)$, we find a family of pairs of irreducible representations $(τ_1,τ_2)\in\hat{H_{1}}\times\hat{H_{2}}$ such that $\mathscr{D}_{H_1,τ_1}=\mathscr{D}_{H_2,τ_2}$. With this we construct examples of isospectral hermitian vector bundles. Secondly, we show that: $τ$-dimension data of one-dimensional representations of a connected compact Lie group $H$ determine the image of homomorphism from $H$ to a given compact Lie group $G$. Lastly, we improve a compactness result for an isospectral set of normal homogeneous spaces $(G/H,m)$ by allowing the Riemannian metric $m$ vary, but posing a constraint that $G$ is semisimple.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源