论文标题

适应性趋化性,用于使用峰值神经网络改进轮廓跟踪

Adaptive Chemotaxis for improved Contour Tracking using Spiking Neural Networks

论文作者

Shukla, Shashwat, Pathak, Rohan, Saraswat, Vivek, Ganguly, Udayan

论文摘要

在本文中,我们提出了一个尖峰神经网络(SNN),用于自主导航,灵感来自烈性烈性虫的趋化网络。特别是,我们专注于轮廓跟踪的问题,其中机器人必须到达并随后遵循所需的浓度设定点。过去仅使用Klinokinesis的过去方案可以有效地遵循轮廓,但要花费过多的时间才能达到设定点。我们通过提出一种新型的自适应Klinotaxis机制来解决这一缺点,该机制建立在先前提出的梯度攀岩电路上。我们演示了如何自主配置我们的Klinotaxis电路,以执行梯度上升,梯度下降并随后被禁用以与上述Klinokinesis电路无缝集成。我们还合并了速度调节(Orthokinesis),以进一步改善轮廓跟踪性能。因此,我们首次提出了一个成功整合Klinokinesis,klinotaxis和orthokinesis的模型。我们通过轮廓跟踪模拟证明,我们提出的方案在达到设定点的时间减少了2.4倍,同时降低了平均偏离设定值的8.7倍。

In this paper we present a Spiking Neural Network (SNN) for autonomous navigation, inspired by the chemotaxis network of the worm Caenorhabditis elegans. In particular, we focus on the problem of contour tracking, wherein the bot must reach and subsequently follow a desired concentration setpoint. Past schemes that used only klinokinesis can follow the contour efficiently but take excessive time to reach the setpoint. We address this shortcoming by proposing a novel adaptive klinotaxis mechanism that builds upon a previously proposed gradient climbing circuit. We demonstrate how our klinotaxis circuit can autonomously be configured to perform gradient ascent, gradient descent and subsequently be disabled to seamlessly integrate with the aforementioned klinokinesis circuit. We also incorporate speed regulation (orthokinesis) to further improve contour tracking performance. Thus for the first time, we present a model that successfully integrates klinokinesis, klinotaxis and orthokinesis. We demonstrate via contour tracking simulations that our proposed scheme achieves an 2.4x reduction in the time to reach the setpoint, along with a simultaneous 8.7x reduction in average deviation from the setpoint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源