论文标题
eigen-cam:使用主组件的类激活图
Eigen-CAM: Class Activation Map using Principal Components
论文作者
论文摘要
由于易于开发模型及其对其他领域的影响,深层神经网络无处不在。这一进展的核心是卷积神经网络(CNN),它们能够学习一组数据来学习表征或功能。对于开发人员以及最终用户来说,了解这种复杂的模型(即数百万参数和数百个层)仍然具有挑战性。这部分是由于缺乏能够提供可解释性和透明度的工具或接口。例如,越来越多的文献(例如,班级激活图(CAM))着重于理解模型从数据中学到的东西,或者为什么在给定的任务中它的行为不佳。本文以先前的想法为基础,以应对对可解释,健壮和透明模型的需求不断增长。我们的方法提供了一种更简单,直观(或熟悉的)生成凸轮的方式。所提出的eigen-cam计算并想象从卷积层中学习的特征/表示的原理组成部分。进行了经验研究,以比较本征胶与最先进的方法(例如Grad-CAM,Grad-CAM ++,CNN固定)在基准数据集上评估在存在对抗噪声的情况下在基准数据集中评估基准数据集(例如弱忽视的定位和定位对象),通过评估了最先进的方法。发现EIGEN-CAM与CNN中完全连接的层构成的分类错误相当强大,不依赖梯度的反向传播,类相关得分,最大激活位置或任何其他形式的加权特征。此外,它可以与所有CNN模型一起使用,而无需修改图层或重新训练模型。与弱监督物体定位相比,在方法中,与最佳方法相比,经验结果比最佳方法提高了12%。
Deep neural networks are ubiquitous due to the ease of developing models and their influence on other domains. At the heart of this progress is convolutional neural networks (CNNs) that are capable of learning representations or features given a set of data. Making sense of such complex models (i.e., millions of parameters and hundreds of layers) remains challenging for developers as well as the end-users. This is partially due to the lack of tools or interfaces capable of providing interpretability and transparency. A growing body of literature, for example, class activation map (CAM), focuses on making sense of what a model learns from the data or why it behaves poorly in a given task. This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models. Our approach provides a simpler and intuitive (or familiar) way of generating CAM. The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers. Empirical studies were performed to compare the Eigen-CAM with the state-of-the-art methods (such as Grad-CAM, Grad-CAM++, CNN-fixations) by evaluating on benchmark datasets such as weakly-supervised localization and localizing objects in the presence of adversarial noise. Eigen-CAM was found to be robust against classification errors made by fully connected layers in CNNs, does not rely on the backpropagation of gradients, class relevance score, maximum activation locations, or any other form of weighting features. In addition, it works with all CNN models without the need to modify layers or retrain models. Empirical results show up to 12% improvement over the best method among the methods compared on weakly supervised object localization.