论文标题
更快的schrödinger风格的量子电路模拟
Faster Schrödinger-style simulation of quantum circuits
论文作者
论文摘要
Google和IBM和IBM的超导量子计算机的最新演示以及来自IONQ的被困的计算机促进了量子算法的新研究,汇编成量子电路和经验算法。虽然在线访问量子硬件仍然太有限而无法满足需求,但在传统计算机上模拟量子电路可以满足许多需求。我们推进了有用的量子电路的Schrödinger风格的仿真,并且作为分层模拟算法中的构建块,我们的结果都在层次的模拟算法中进行了块。我们的算法贡献显示了如何一次模拟多个量子门,如何避免浮点倍增,如何最好地使用指令级别和线程级别和线级并行性以及CPU缓存以及如何通过重新排序的电路门来利用这些优化。虽然前面没有描述,但美国支持的这些技术支持已发表的高性能分布式仿真,最多可达64个QUAT。为了显示其他影响,我们对Microsoft,IBM和Google Simulators对Google的硬循环进行了基准测试。
Recent demonstrations of superconducting quantum computers by Google and IBM and trapped-ion computers from IonQ fueled new research in quantum algorithms, compilation into quantum circuits, and empirical algorithmics. While online access to quantum hardware remains too limited to meet the demand, simulating quantum circuits on conventional computers satisfies many needs. We advance Schrödinger-style simulation of quantum circuits that is useful standalone and as a building block in layered simulation algorithms, both cases are illustrated in our results. Our algorithmic contributions show how to simulate multiple quantum gates at once, how to avoid floating-point multiplies, how to best use instruction-level and thread-level parallelism as well as CPU cache, and how to leverage these optimizations by reordering circuit gates. While not described previously, these techniques implemented by us supported published high-performance distributed simulations up to 64 qubits. To show additional impact, we benchmark our simulator against Microsoft, IBM and Google simulators on hard circuits from Google.