论文标题
解决福克 - 普兰克方程的解决方案,以缓慢驱动的布朗运动:紧急几何形状和相应热力学度量的公式
Solution to the Fokker-Planck equation for slowly driven Brownian motion: Emergent geometry and a formula for the corresponding thermodynamic metric
论文作者
论文摘要
最近,使用几何方法来理解和控制小平衡系统,但缺乏数学上严格的基础。为此,我们为Fokker-Planck方程开发了一种扰动解决方案,以通过相应的单粒子Schrödinger操作员的光谱特性实现的过度阻尼极限中的一维驱动的布朗运动。扰动理论在于以系统时间尺度的单位测量的最快变化控制参数变化的逆特征时间尺度,该时间由相应的Schrödinger操作员的最小特征值设置。它适用于Schrödinger运营商具有狭窄潜力的任何布朗系统。我们使用该理论来严格地得出系统控制参数空间中Riemannian“热力学”度量的精确公式。我们表明,在扰动理论中最多可以二阶术语,最佳耗散驱动方案最小化了该指标定义的长度。我们还表明,可以从我们的精确公式中计算出一个先前提出的度量,其校正在特征长度尺度上被指数抑制。我们使用谐波振荡器的二维示例说明了我们的公式,该谐波振荡器在时间依赖的电场中具有时间依赖的弹簧常数。最后,我们证明了最佳控制问题的riemannian几何结构是出现的。它源自概率密度的扰动膨胀形式,并持续到扩展的所有顺序。
Considerable progress has recently been made with geometrical approaches to understanding and controlling small out-of-equilibrium systems, but a mathematically rigorous foundation for these methods has been lacking. Towards this end, we develop a perturbative solution to the Fokker-Planck equation for one-dimensional driven Brownian motion in the overdamped limit enabled by the spectral properties of the corresponding single-particle Schrödinger operator. The perturbation theory is in powers of the inverse characteristic timescale of variation of the fastest varying control parameter, measured in units of the system timescale, which is set by the smallest eigenvalue of the corresponding Schrödinger operator. It applies to any Brownian system for which the Schrödinger operator has a confining potential. We use the theory to rigorously derive an exact formula for a Riemannian "thermodynamic" metric in the space of control parameters of the system. We show that up to second-order terms in the perturbation theory, optimal dissipation-minimizing driving protocols minimize the length defined by this metric. We also show that a previously proposed metric is calculable from our exact formula with corrections that are exponentially suppressed in a characteristic length scale. We illustrate our formula using the two-dimensional example of a harmonic oscillator with time-dependent spring constant in a time-dependent electric field. Lastly, we demonstrate that the Riemannian geometric structure of the optimal control problem is emergent; it derives from the form of the perturbative expansion for the probability density and persists to all orders of the expansion.