论文标题

优化推荐系统中的长期社会福利:一种受限的匹配方法

Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach

论文作者

Mladenov, Martin, Creager, Elliot, Ben-Porat, Omer, Swersky, Kevin, Zemel, Richard, Boutilier, Craig

论文摘要

大多数推荐系统(RS)研究假设可以独立于其他代理(例如其他用户,内容提供商)的实用程序来最大化用户的效用。在现实的环境中,这通常不是正确的 - RS生态系统的动态使所有代理人的长期实用性融为一体。在这项工作中,我们探讨了内容提供商在收到一定水平的用户参与度外无法保持可行的设置。我们将这种环境中的建议问题作为诱导动力学系统中的平衡选择之一,并表明它可以作为最佳约束匹配问题解决。我们的模型确保系统达到平衡,并具有最大的社会福利,并由一组可行的可行提供商组成。我们证明,即使在简单,风格化的动力RS模型中,推荐的标准近视方法 - 始终将用户与最佳提供商匹配 - 表现不佳。我们开发了几种可扩展的技术来解决匹配问题,并与用户遗憾和公平的各种概念建立了联系,认为这些结果在实用意义上更公平。

Most recommender systems (RS) research assumes that a user's utility can be maximized independently of the utility of the other agents (e.g., other users, content providers). In realistic settings, this is often not true---the dynamics of an RS ecosystem couple the long-term utility of all agents. In this work, we explore settings in which content providers cannot remain viable unless they receive a certain level of user engagement. We formulate the recommendation problem in this setting as one of equilibrium selection in the induced dynamical system, and show that it can be solved as an optimal constrained matching problem. Our model ensures the system reaches an equilibrium with maximal social welfare supported by a sufficiently diverse set of viable providers. We demonstrate that even in a simple, stylized dynamical RS model, the standard myopic approach to recommendation---always matching a user to the best provider---performs poorly. We develop several scalable techniques to solve the matching problem, and also draw connections to various notions of user regret and fairness, arguing that these outcomes are fairer in a utilitarian sense.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源