论文标题
搜索ADS中的表面缺陷CFT $ _3 $
Searching for surface defect CFTs within AdS$_3$
论文作者
论文摘要
我们研究$ \ mathrm {ads} _3 \ times s^3/\ mathbb {z} _k \ times {\ tilde s}^3/\ mathbb {z} _ {k} _ {k'} $ solutions in Me-theore保留保留$ \ \ \ \ \ \ \ \ mathcal {n} n} =(0,4)$的方法M2-M5 Brane交点以M5'-branes结尾,两种类型的五溴均放在A型奇点上。本班级的解决方案在本地分解至$ \ mathrm {ads} _7/\ mathbb {z} _k \ times {\ tilde s}^3/\ mathbb {z} _ {k} _ {k'} $ $ \ MATHCAL {n} =(1,0)$ 6D CFT双重二元。减少IIA型后,我们将获得$ \ Mathrm {ads} _3 \ times s^3/\ mathbb {z} _k \ times s^2 \ times s^2 \ timesσ_2$σ_2$保留(0,4)SuperSmorties supersmorties的新类别的解决方案。我们在这些解决方案中构造了偶二QUVER CFTS的显式2D QUVER CFTS,描述了嵌入6D(1,0)Quiver CFT二重奏中的D2-D4表面缺陷,$ \ MathRM {ADS} _7/\ Mathbb {Z} _k {Z} _k _K $ sosements _k $。最后,在大规模的情况下,我们表明最近构建的$ \ mathrm {ads} _3 \ times s^2 \ times \ times \ times \ mathrm {cy} _2 $解决方案,带有$ \ mathcal {n} =(0,4)$ supersymetries在$ \ supersmetries获得$ \ mathrm persiperation $ \ mathrm {cy cy fection时, D2-NS5-D6缺陷嵌入了BrandHuber-oz $ \ mathrm {ads} _6 $背景中的5D CFT二二元组中。
We study $\mathrm{AdS}_3\times S^3/\mathbb{Z}_k\times {\tilde S}^3/\mathbb{Z}_{k'}$ solutions to M-theory preserving $\mathcal{N}=(0,4)$ supersymmetries, arising as near-horizon limits of M2-M5 brane intersections ending on M5'-branes, with both types of five-branes placed on A-type singularities. Solutions in this class asymptote locally to $\mathrm{AdS}_7/\mathbb{Z}_k\times {\tilde S}^3/\mathbb{Z}_{k'}$, and can thus be interpreted as holographic duals to surface defect CFTs within the $\mathcal{N}=(1,0)$ 6d CFT dual to this solution. Upon reduction to Type IIA, we obtain a new class of solutions of the form $\mathrm{AdS}_3\times S^3/\mathbb{Z}_k\times S^2 \times Σ_2$ preserving (0,4) supersymmetries. We construct explicit 2d quiver CFTs dual to these solutions, describing D2-D4 surface defects embedded within the 6d (1,0) quiver CFT dual to the $\mathrm{AdS}_7/\mathbb{Z}_k$ solution to massless IIA. Finally, in the massive case, we show that the recently constructed $\mathrm{AdS}_3\times S^2\times \mathrm{CY}_2$ solutions with $\mathcal{N}=(0,4)$ supersymmetries gain a defect interpretation when $\mathrm{CY}_2=T^4$ as surface CFTs originating from D2-NS5-D6 defects embedded within the 5d CFT dual to the Brandhuber-Oz $\mathrm{AdS}_6$ background.