论文标题

社会感知中的可预测性和公平性

Predictability and Fairness in Social Sensing

论文作者

Ghosh, Ramen, Marecek, Jakub, Griggs, Wynita M., Souza, Matheus, Shorten, Robert N.

论文摘要

我们考虑了分布式算法的设计,该算法管理代理商对社会传感平台做出贡献的方式。具体来说,我们对需要为平台做出贡献的代理商之间的公平性感兴趣。一个值得注意的例子是公共机构经营的平台,公平性是法律要求。由于我们希望同时实现一个有效的社会传感平台,但也为代理商提供预定义的服务(例如,为平台做出贡献的公平机会),这种分布式系统的设计是具有挑战性的。在本文中,我们介绍了迭代功能系统(IFS),作为该系统设计和分析的工具。我们展示了如何使用IFS框架来实现为代理提供可预测的服务质量的系统,可用于支撑代理与社会传感平台相互作用的合同,并且有效。 为了通过用例说明我们的设计,我们考虑了一个大型高密度的参与停放车辆的网络。当被管理中心醒来时,该网络会使用基于RFID的技术来寻找移动感兴趣的失踪实体。我们规范哪些车辆在任何时间点都在积极寻找感兴趣的实体。这样一来,我们试图在整个网络上均衡车辆能源消耗。通过模拟在澳大利亚墨尔本寻找失踪的阿尔茨海默氏病人的患者的模拟来说明这一点。提出了实验结果,以说明我们系统的功效以及代理进入平台独立于初始条件的可预测性。

We consider the design of distributed algorithms that govern the manner in which agents contribute to a social sensing platform. Specifically, we are interested in situations where fairness among the agents contributing to the platform is needed. A notable example are platforms operated by public bodies, where fairness is a legal requirement. The design of such distributed systems is challenging due to the fact that we wish to simultaneously realise an efficient social sensing platform, but also deliver a predefined quality of service to the agents (for example, a fair opportunity to contribute to the platform). In this paper, we introduce iterated function systems (IFS) as a tool for the design and analysis of systems of this kind. We show how the IFS framework can be used to realise systems that deliver a predictable quality of service to agents, can be used to underpin contracts governing the interaction of agents with the social sensing platform, and which are efficient. To illustrate our design via a use case, we consider a large, high-density network of participating parked vehicles. When awoken by an administrative centre, this network proceeds to search for moving missing entities of interest using RFID-based techniques. We regulate which vehicles are actively searching for the moving entity of interest at any point in time. In doing so, we seek to equalise vehicular energy consumption across the network. This is illustrated through simulations of a search for a missing Alzheimer's patient in Melbourne, Australia. Experimental results are presented to illustrate the efficacy of our system and the predictability of access of agents to the platform independent of initial conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源