论文标题

深度学习碳酸盐岩石岩石Micro-CT图像的深度学习

Deep learning for lithological classification of carbonate rock micro-CT images

论文作者

Anjos, Carlos E. M. dos, Avila, Manuel R. V., Vasconcelos, Adna G. P., Neta, Aurea M. P., Medeiros, Lizianne C., Evsukoff, Alexandre G., Surmas, Rodrigo

论文摘要

除了持续的开发外,盐前碳酸盐储层表征仍然是一个挑战,主要是由于固有的地质特殊性所致。这些挑战刺激了图像分类任务的完善技术(例如人工智能算法)的使用。因此,这项工作旨在提出深度学习技术的应用,以识别巴西盐前碳酸盐岩石岩石学图像中的模式,从而使岩性分类。提出了四个卷积神经网络模型。第一个模型包括三个卷积层,然后是完全连接的层,并用作以下建议的基本模型。在接下来的两个型号中,我们用空间金字塔池和全球平均池层替换最大池层。最后一个模型结合了空间金字塔池的组合,然后是全球平均池代替最后一个池层。在可能的情况下,使用原始图像以及调整大小的图像进行比较。数据集由三个不同类别的6,000张图像组成。每个图像以及每个样本的最常预测类评估模型性能。根据准确性,对评估图像进行培训的模型2取得了最佳效果,首先评估方法平均达到75.54%,第二次评估方法平均达到81.33%。我们开发了一个工作流程,以通过以无损的方式使用深度学习算法对微观图像进行分类,从而自动化和加速巴西盐前碳酸盐样品的岩性分类。

In addition to the ongoing development, pre-salt carbonate reservoir characterization remains a challenge, primarily due to inherent geological particularities. These challenges stimulate the use of well-established technologies, such as artificial intelligence algorithms, for image classification tasks. Therefore, this work intends to present an application of deep learning techniques to identify patterns in Brazilian pre-salt carbonate rock microtomographic images, thus making possible lithological classification. Four convolutional neural network models were proposed. The first model includes three convolutional layers followed by fully connected layers and is used as a base model for the following proposals. In the next two models, we replace the max pooling layer with a spatial pyramid pooling and a global average pooling layer. The last model uses a combination of spatial pyramid pooling followed by global average pooling in place of the last pooling layer. All models are compared using original images, when possible, as well as resized images. The dataset consists of 6,000 images from three different classes. The model performances were evaluated by each image individually, as well as by the most frequently predicted class for each sample. According to accuracy, Model 2 trained on resized images achieved the best results, reaching an average of 75.54% for the first evaluation approach and an average of 81.33% for the second. We developed a workflow to automate and accelerate the lithology classification of Brazilian pre-salt carbonate samples by categorizing microtomographic images using deep learning algorithms in a non-destructive way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源