论文标题
稀疏$ 4 $ - 临界图的圆形色数低
Sparse $4$-critical graphs have low circular chromatic number
论文作者
论文摘要
Kostochka和Yancey证明,每$ 4 $ clatch $ g $都具有$ e(g)\ geq \ frac {5v(g)-2} {3} $,并且当$ g $是$ 4 $ -ORE时,该公平只能保持。我们表明,Postle和Smith-Roberge的问题意味着,每$ 4 $ - 临界图,没有$(7,2)$ - 圆形色的$ E(g)\ geq \ geq \ frac \ frac {27v(g)-20} -20} {15} $。我们证明,除非$ g $ no $ e(g)\ geq \ frac {17v(g)} {10} $,除非$ g $是同构为$ k_ {4} $,否则每$ 4 $ - 临界图,没有$(7,2)$ - 颜色具有$ e(g)\ geq \ frac {17v(g)} {10} $。我们还表明,如果没有$(7,2)$的$ 4 $批判图的加莱树具有每个组件同构的奇数循环,爪子或路径。如果加莱树包含一个奇数的循环组件,则$ g $对奇数车轮是同构的。通常,我们显示一个$ k $ - 批判图,没有$(2K-1,2)$ - 颜色包含一个大小$ k-1 $的大小为$ k-1 $的颜色,是同构为$ k_ {k {k {k} $。
Kostochka and Yancey proved that every $4$-critical graph $G$ has $e(G) \geq \frac{5v(G) - 2}{3}$, and that equality holds if and only if $G$ is $4$-Ore. We show that a question of Postle and Smith-Roberge implies that every $4$-critical graph with no $(7,2)$-circular-colouring has $e(G) \geq \frac{27v(G) -20}{15}$. We prove that every $4$-critical graph with no $(7,2)$-colouring has $e(G) \geq \frac{17v(G)}{10}$ unless $G$ is isomorphic to $K_{4}$ or the wheel on six vertices. We also show that if the Gallai Tree of a $4$-critical graph with no $(7,2)$-colouring has every component isomorphic to either an odd cycle, a claw, or a path. In the case that the Gallai Tree contains an odd cycle component, then $G$ is isomorphic to an odd wheel. In general, we show a $k$-critical graph with no $(2k-1,2)$-colouring that contains a clique of size $k-1$ in it's Gallai Tree is isomorphic to $K_{k}$.