论文标题
建模复杂系统中的时间变化相互作用:得分驱动的动力学模型
Modelling time-varying interactions in complex systems: the Score Driven Kinetic Ising Model
论文作者
论文摘要
分析现实世界复杂系统的一个常见问题是,元素之间的相互作用通常会随着时间的流逝而变化:这使得很难找到描述这种演变的最佳模型,并且可以从数据中估算出来,尤其是当驾驶机制未知时。在这里,我们提供了有关开发时间变化相互作用的新观点,该模型引入了众所周知的动力学模型(KIM)的概括,这是一种极简主义的成对恒定相互作用模型,该模型在多个科学学科中发现了应用。将任意动态选择保持在最低限度,并寻求信息理论最优性,得分驱动的方法使我们可以大大提高可以使用简单的KIM从数据中提取的知识。特别是,我们首先确定一个参数,其在给定时间的值可以与动力学的局部可预测性直接相关联。然后,我们引入了一种方法,可以从数据中动态地了解该参数的值,而无需从参数上指定其动力学。最后,我们将框架扩展到实时可预测性的不同来源(例如内源性与外源性)。 我们将方法应用于几个复杂的系统,包括金融市场,时间(社会)网络和神经元人群。我们的结果表明,得分驱动的KIM会对系统产生深刻的描述,从而可以实时预测预测准确性,并可以分离动力学的不同组件。这为广泛学科的数据分析提供了显着的方法论改进。
A common issue when analyzing real-world complex systems is that the interactions between the elements often change over time: this makes it difficult to find optimal models that describe this evolution and that can be estimated from data, particularly when the driving mechanisms are not known. Here we offer a new perspective on the development of models for time-varying interactions introducing a generalization of the well-known Kinetic Ising Model (KIM), a minimalistic pairwise constant interactions model which has found applications in multiple scientific disciplines. Keeping arbitrary choices of dynamics to a minimum and seeking information theoretical optimality, the Score-Driven methodology lets us significantly increase the knowledge that can be extracted from data using the simple KIM. In particular, we first identify a parameter whose value at a given time can be directly associated with the local predictability of the dynamics. Then we introduce a method to dynamically learn the value of such parameter from the data, without the need of specifying parametrically its dynamics. Finally, we extend our framework to disentangle different sources (e.g. endogenous vs exogenous) of predictability in real time. We apply our methodology to several complex systems including financial markets, temporal (social) networks, and neuronal populations. Our results show that the Score-Driven KIM produces insightful descriptions of the systems, allowing to predict forecasting accuracy in real time as well as to separate different components of the dynamics. This provides a significant methodological improvement for data analysis in a wide range of disciplines.