论文标题
深层多视图时空虚拟图神经网络,用于全市范围内乘车需求预测
Deep Multi-View Spatiotemporal Virtual Graph Neural Network for Significant Citywide Ride-hailing Demand Prediction
论文作者
论文摘要
城市乘车需求预测是智能运输系统建设的至关重要但具有挑战性的任务。可预测的乘车需求可以促进更合理的车辆调度和在线汽车平台调度。没有外部结构化数据的常规深度学习方法可以通过CNN和RNN的混合模型通过网格融合的混合模型来实现,但是空间数据稀有性和对时间长期依赖性的空间数据稀疏性和有限的学习能力仍然是两个引人注目的瓶颈。为了解决这些局限性,我们提出了一种新的虚拟图建模方法,以关注重要的需求区域和一种新型的深层多视图时空虚拟图神经网络(DMVST-VGNN),以增强空间动力学和时间长期依赖性的学习能力。具体而言,DMVST-VGNN集成了一级卷积神经网络,多图注意神经网络和变压器层的结构,这些结构分别对应于短期时间动力学视图,空间动力学视图和长期时间动力学视图。在本文中,实验是在纽约市的两个大型纽约市数据集上进行的实验。实验结果表明,在大量全市乘车需求预测中,DMVST-VGNN框架的有效性和优越性。
Urban ride-hailing demand prediction is a crucial but challenging task for intelligent transportation system construction. Predictable ride-hailing demand can facilitate more reasonable vehicle scheduling and online car-hailing platform dispatch. Conventional deep learning methods with no external structured data can be accomplished via hybrid models of CNNs and RNNs by meshing plentiful pixel-level labeled data, but spatial data sparsity and limited learning capabilities on temporal long-term dependencies are still two striking bottlenecks. To address these limitations, we propose a new virtual graph modeling method to focus on significant demand regions and a novel Deep Multi-View Spatiotemporal Virtual Graph Neural Network (DMVST-VGNN) to strengthen learning capabilities of spatial dynamics and temporal long-term dependencies. Specifically, DMVST-VGNN integrates the structures of 1D Convolutional Neural Network, Multi Graph Attention Neural Network and Transformer layer, which correspond to short-term temporal dynamics view, spatial dynamics view and long-term temporal dynamics view respectively. In this paper, experiments are conducted on two large-scale New York City datasets in fine-grained prediction scenes. And the experimental results demonstrate effectiveness and superiority of DMVST-VGNN framework in significant citywide ride-hailing demand prediction.