论文标题
使用基于Python的能源计划工具在Alderney Island的可持续微电网上建立可持续的微电网
Towards a Sustainable Microgrid on Alderney Island Using a Python-based Energy Planning Tool
论文作者
论文摘要
在偏远或岛屿的社区中,需要使用微电网(MG)来确保电气化和供应的弹性。但是,即使在小规模系统中,考虑到所有可再生能源(Ress)的负载需求和发电量的所有不确定性,在计算和数学上都充满挑战。本文使用了基于Python的开源能源计划(Pyeplan)工具,该工具是为在Alderney Island的偏远地区设计的设计,该工具是Alderney Island的3 $^{rd} $最大的河道群岛,人口约为2000人。两阶段随机模型用于最佳投资电池存储,太阳能和风能单元。此外,AC功率流程方程是由Pyeplan中Distflow模型的线性化版本建模的,其中投资变量是这里和现在的决策,而不是不确定参数的函数,而操作变量是等待的决策和不确定参数的函数。 $ k $ - 均值聚类技术用于生成一组最佳(寻求风险),名义(风险中性)和最差(风险的)场景,使用负载需求的年度历史模式和太阳能/风力发电机来捕获不确定性谱。拟议的投资计划工具是一种混合企业线性编程(MILP)模型,并用Pyomo在Pyeplan编码。
In remote or islanded communities, the use of microgrids (MGs) is necessary to ensure electrification and resilience of supply. However, even in small-scale systems, it is computationally and mathematically challenging to design low-cost, optimal, sustainable solutions taking into consideration all the uncertainties of load demands and power generations from renewable energy sources (RESs). This paper uses the open-source Python-based Energy Planning (PyEPLAN) tool, developed for the design of sustainable MGs in remote areas, on the Alderney island, the 3$^{rd}$ largest of the Channel Islands with a population of about 2000 people. A two-stage stochastic model is used to optimally invest in battery storage, solar power, and wind power units. Moreover, the AC power flow equations are modelled by a linearised version of the DistFlow model in PyEPLAN, where the investment variables are here-and-now decisions and not a function of uncertain parameters while the operation variables are wait-and-see decisions and a function of uncertain parameters. The $k$-means clustering technique is used to generate a set of best (risk-seeker), nominal (risk-neutral), and worst (risk-averse) scenarios capturing the uncertainty spectrum using the yearly historical patterns of load demands and solar/wind power generations. The proposed investment planning tool is a mixed-integer linear programming (MILP) model and is coded with Pyomo in PyEPLAN.