论文标题

基于GPU的多维振幅分析,以搜索Tetraquark候选人

A GPU based multidimensional amplitude analysis to search for tetraquark candidates

论文作者

Sur, Nairit, Cristella, Leonardo, Di Florio, Adriano, Mastrapasqua, Vincenzo

论文摘要

随着当前的对撞机实验继续积累大量的数据,物理学家沉迷于更复杂和雄心勃勃的分析策略,对计算资源的需求正在稳步增加。在强子光谱和风味物理学的领域尤其如此,在该领域中,分析通常取决于复杂的多维无键最大似然拟合,具有数十个自由参数,目的是研究Hadrons的内部结构。 图形处理单元(GPU)代表了最复杂和通用的平行计算体系结构之一,这些计算体系结构已成为高能物理学家的流行工具包,以满足其计算需求。 Goofit是即将到来的开源工具连接根/屋顶与NVIDIA GPU上的CUDA平台的连接,它充当了最小化算法和平行处理器之间的桥梁,允许同时在多个核心上估算概率密度函数。 在本文中,对使用Goofit开发的全面振幅分析框架的速度和可靠性进行了测试。在$ b^0 \ rightArrow j/ψkπ$衰减中,这是在Goofit上建造的第一个此类钳工的四维钳工框架之一,旨在寻找异国情调的tetraquark国家,并且也可以无缝地适合其他类似的分析。与在多核CPU群集上运行的相同分析的根/屋顶实现相比,在GPU上运行的Goofit Fitter在计算速度上表现出显着提高。此外,它对对整体拟合的组件的敏感性显示出敏感性。它有可能成为敏感和计算密集型物理分析的强大工具。

The demand for computational resources is steadily increasing in experimental high energy physics as the current collider experiments continue to accumulate huge amounts of data and physicists indulge in more complex and ambitious analysis strategies. This is especially true in the fields of hadron spectroscopy and flavour physics where the analyses often depend on complex multidimensional unbinned maximum-likelihood fits, with several dozens of free parameters, with an aim to study the internal structure of hadrons. Graphics processing units (GPUs) represent one of the most sophisticated and versatile parallel computing architectures that are becoming popular toolkits for high energy physicists to meet their computational demands. GooFit is an upcoming open-source tool interfacing ROOT/RooFit to the CUDA platform on NVIDIA GPUs that acts as a bridge between the MINUIT minimization algorithm and a parallel processor, allowing probability density functions to be estimated on multiple cores simultaneously. In this article, a full-fledged amplitude analysis framework developed using GooFit is tested for its speed and reliability. The four-dimensional fitter framework, one of the firsts of its kind to be built on GooFit, is geared towards the search for exotic tetraquark states in the $B^0 \rightarrow J/ψK π$ decays and can also be seamlessly adapted for other similar analyses. The GooFit fitter, running on GPUs, shows a remarkable improvement in the computing speed compared to a ROOT/RooFit implementation of the same analysis running on multi-core CPU clusters. Furthermore, it shows sensitivity to components with small contributions to the overall fit. It has the potential to be a powerful tool for sensitive and computationally intensive physics analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源