论文标题
Seyfert 1 Galaxy ESO 141-G055的宽带X射线光谱研究与XMM-Newton和Nustar
A broadband X-ray spectral study of the Seyfert 1 galaxy ESO 141--G055 with XMM-Newton and NuSTAR
论文作者
论文摘要
我们已经使用所有可用的\ xmm {}和\ nustar {}观测来广泛研究了源ESO〜141 - G055的宽带X射线光谱。我们检测到低于2 KEV的突出的软过量,狭窄的Fe线和Compton Hump(> 10 KEV)。软过量的起源仍在争论中。我们使用了两个模型来描述柔软的多余:从电离积聚磁盘和固有的热组合模型中的模糊反射。我们发现,这两个模型都很好地解释了软过量。我们确认我们在该来源的X射线光谱中未检测到任何宽Fe线,尽管两种物理模型都均均均均均均均最大旋转的黑洞方案($> $> $ 0.96)。这可能意味着宽Fe线不存在或无法检测到模糊。源的爱丁顿速率估计为$λ_{EDD} \ sim 0.31 $。在反射模型中,康普顿驼峰具有离子化和中性反射成分的贡献。同时描述窄fe k $α$和康普顿驼峰的中性反射器的列密度为$ \ rm n_ {h} \ geq 7 \ times 10^{24} \ rm cm^{ - 2} $。此外,我们检测一个用离子化参数$ \ log耳的电离吸收的部分覆盖的吸收\ rm cm^{ - 2} $,覆盖率为$ 0.21^{+0.01} _ { - 0.01} $。
We have extensively studied the broadband X-ray spectra of the source ESO~141--G055 using all available \xmm{} and \nustar{} observations. We detect a prominent soft excess below 2 keV, a narrow Fe line and a Compton hump (>10 keV). The origin of the soft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disk and the intrinsic thermal Comptonisation model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a$>$0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $λ_{Edd} \sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K$α$ and the Compton hump has a column density of $\rm N_{H} \geq 7\times 10^{24} \rm cm^{-2} $. In addition, we detect a partially covering ionized absorption with ionization parameter $\log ξ/\rm erg cm s^{-1}$ = $0.1^{+0.1}_{-0.1}$ and column density $\rm N_{H} =20.6^{+1.0}_{-1.0}\times 10^{22} \rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.