论文标题
用于靶向多模式PET-CT肺肿瘤分割的多模式空间注意模块
Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung Tumor Segmentation
论文作者
论文摘要
多模式正电子发射断层扫描层析成像(PET-CT)通常用于癌症评估。 PET-CT结合了对肿瘤检测的高灵敏度与PET和来自CT的解剖信息。肿瘤分割是PET-CT的关键要素,但目前没有准确的自动分割方法。分割倾向于通过不同的成像专家手动完成,并且它是劳动密集型的,容易出现错误和不一致。以前的自动分割方法主要集中在融合从PET和CT模态分开提取的信息,并以每个模式包含互补信息的基本假设。但是,这些方法并不能完全利用可以指导分割的高PET肿瘤灵敏度。我们引入了一个多模式空间注意模块(MSAM),该模块自动学习强调与肿瘤有关的区域(空间区域),并用生理高摄取抑制正常区域。随后,由此产生的空间注意图用于针对卷积神经网络(CNN),以分割肿瘤可能性较高的区域。我们的MSAM可以应用于普通的骨干架构和经过训练的端到端。我们对两个非小细胞肺癌(NSCLC)和软组织肉瘤(STS)的两个临床PET-CT数据集的实验结果验证了MSAM在这些不同的癌症类型中的有效性。我们表明,我们的MSAM具有常规的U-NET主链,超过了最新的肺部肿瘤分割方法,骰子相似性系数(DSC)的余量为7.6%。
Multimodal positron emission tomography-computed tomography (PET-CT) is used routinely in the assessment of cancer. PET-CT combines the high sensitivity for tumor detection with PET and anatomical information from CT. Tumor segmentation is a critical element of PET-CT but at present, there is not an accurate automated segmentation method. Segmentation tends to be done manually by different imaging experts and it is labor-intensive and prone to errors and inconsistency. Previous automated segmentation methods largely focused on fusing information that is extracted separately from the PET and CT modalities, with the underlying assumption that each modality contains complementary information. However, these methods do not fully exploit the high PET tumor sensitivity that can guide the segmentation. We introduce a multimodal spatial attention module (MSAM) that automatically learns to emphasize regions (spatial areas) related to tumors and suppress normal regions with physiologic high-uptake. The resulting spatial attention maps are subsequently employed to target a convolutional neural network (CNN) for segmentation of areas with higher tumor likelihood. Our MSAM can be applied to common backbone architectures and trained end-to-end. Our experimental results on two clinical PET-CT datasets of non-small cell lung cancer (NSCLC) and soft tissue sarcoma (STS) validate the effectiveness of the MSAM in these different cancer types. We show that our MSAM, with a conventional U-Net backbone, surpasses the state-of-the-art lung tumor segmentation approach by a margin of 7.6% in Dice similarity coefficient (DSC).