论文标题
超出交换性的网络中的依赖性依赖性
Tractably Modelling Dependence in Networks Beyond Exchangeability
论文作者
论文摘要
我们提出了一个通用框架,用于建模网络数据,该框架旨在描述非交换网络的各个方面。在潜在(未观察到的)变量的条件下,网络的边缘由其有限的生长历史(带有潜在的订单)生成,而邻接矩阵的边缘概率是通过图形限制函数(或graphon)的概括来建模的。特别是,我们研究网络中网络的估计,聚类和程度行为。我们确定(i)相对于平方误差丢失的复合图形的最小估计器; (ii)当在其他条件下考虑块恒定的复合图形时,光谱聚类能够始终检测到潜在的成员; (iii)我们能够在特定方案和参数选择下构建具有重尾经验程度的模型。这探讨了为什么以及在哪些条件下以及在哪些条件下可以通过随机块模型来描述非交换网络数据。新的建模框架能够捕获网络数据的经验重要特征,例如稀疏性以及重型尾部分布,并增加对生成机制会导致它们产生的理解。 关键字:统计网络分析,可交换阵列,随机块模型,非线性随机过程。
We propose a general framework for modelling network data that is designed to describe aspects of non-exchangeable networks. Conditional on latent (unobserved) variables, the edges of the network are generated by their finite growth history (with latent orders) while the marginal probabilities of the adjacency matrix are modeled by a generalization of a graph limit function (or a graphon). In particular, we study the estimation, clustering and degree behavior of the network in our setting. We determine (i) the minimax estimator of a composite graphon with respect to squared error loss; (ii) that spectral clustering is able to consistently detect the latent membership when the block-wise constant composite graphon is considered under additional conditions; and (iii) we are able to construct models with heavy-tailed empirical degrees under specific scenarios and parameter choices. This explores why and under which general conditions non-exchangeable network data can be described by a stochastic block model. The new modelling framework is able to capture empirically important characteristics of network data such as sparsity combined with heavy tailed degree distribution, and add understanding as to what generative mechanisms will make them arise. Keywords: statistical network analysis, exchangeable arrays, stochastic block model, nonlinear stochastic processes.