论文标题

大型涡流模拟的反卷积人工神经网络模型

Deconvolutional artificial neural network models for large eddy simulation of turbulence

论文作者

Yuan, Zelong, Xie, Chenyue, Wang, Jianchun

论文摘要

在湍流的大涡模拟(LES)中,开发了用于亚网格尺度(SGS)应力的反向逆转性人工神经网络(DANN)模型。不同空间点处的过滤速度用作DANN模型的输入特征,以重建未过滤的速度。为了准确模拟SGS动力学的效果,选择DANN模型的网格宽度小于滤波器宽度。在先前的研究中,DANN模型可以比常规近似反卷积方法(ADM)和速度梯度模型(VGM)更准确地预测SGS应力:可以使相关系数大于99 \%,并且相对误差可以使DANN模型的相对误差小于15 \%。 In an a posteriori study, a comprehensive comparison of the DANN model, the implicit large eddy simulation (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) shows that: the DANN model is superior to the ILES, DSM, and DMM models in the prediction of the velocity spectrum, various statistics of velocity and the instantaneous coherent structures without increasing the相当大的计算成本。此外,受过训练的没有任何微调的DANN模型可以很好地预测不同滤波器宽度的速度统计数据。这些结果表明,考虑到SGS空间特征的DANN框架是在湍流中开发高级SGS模型的一种有前途的方法。

Deconvolutional artificial neural network (DANN) models are developed for subgrid-scale (SGS) stress in large eddy simulation (LES) of turbulence. The filtered velocities at different spatial points are used as input features of the DANN models to reconstruct the unfiltered velocity. The grid width of the DANN models is chosen to be smaller than the filter width, in order to accurately model the effects of SGS dynamics. The DANN models can predict the SGS stress more accurately than the conventional approximate deconvolution method (ADM) and velocity gradient model (VGM) in a prior study: the correlation coefficients can be made larger than 99\% and the relative errors can be made less than 15\% for the DANN model. In an a posteriori study, a comprehensive comparison of the DANN model, the implicit large eddy simulation (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) shows that: the DANN model is superior to the ILES, DSM, and DMM models in the prediction of the velocity spectrum, various statistics of velocity and the instantaneous coherent structures without increasing the considerable computational cost. Besides, the trained DANN models without any fine-tuning can predict the velocity statistics well for different filter widths. These results indicate that the DANN framework with consideration of SGS spatial features is a promising approach to develop advanced SGS models in the LES of turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源