论文标题
$ {\ Mathbb {r}}}^{n} $的最大函数表征与尖端变量各向异性
Maximal Function Characterizations of Hardy Spaces on ${\mathbb{R}}^{n}$ with Pointwise Variable Anisotropy
论文作者
论文摘要
在2011年,Dekel等人。开发了高度的几何硬度空间$ h^p(θ)$,对于完整范围$ 0 <p \ leq 1 $,由连续的多级椭圆形覆盖$ \ mathbb {r}^n $带有高偏型的$ f $θ$ of y Mathbb {r}^n $,从而使椭圆形可以从点且层面上快速变化,从而可以迅速地变化。在本文中,如果封面$θ$是连续的,则作者在径向,非界限和切向最大函数方面进一步获得了$ h^p(θ)$的一些真实变量特征,从而将已知的结果推广到Bownik的各向异性耐药空间上。
In 2011, Dekel et al. developed highly geometric Hardy spaces $H^p(Θ)$, for the full range $0<p\leq 1$, which are constructed by continuous multi-level ellipsoid covers $Θ$ of $\mathbb{R}^n$ with high anisotropy in the sense that the ellipsoids can change shape rapidly from point to point and from level to level. In this article, if the cover $Θ$ is pointwise continuous, then the authors further obtain some real-variable characterizations of $H^p(Θ)$ in terms of the radial, the non-tangential and the tangential maximal functions, which generalize the known results on the anisotropic Hardy spaces of Bownik.