论文标题

中性流体和等离子体的保守正规化

Conservative regularization of neutral fluids and plasmas

论文作者

Sachdev, Sonakshi

论文摘要

理想的方程式系统(例如Euler和MHD)可能会形成奇异的结构,例如冲击,涡流/电流表。其中,由于涡旋拉伸而产生涡旋奇异性,这可能导致无限的肠增长。粘度和电阻率提供了这些奇异性的耗散范围。与1D Inviscid Burgers方程的分散性KDV正则化相似,我们提出了理想3D可压缩流,MHD和2-Fluid等离子体的局部保守正规化(潜在地应用于高耗散的高涡度流)。正则化涉及引入速度方程中的涡旋“旋转”项lambda^2 w x curl w。截止长度lambda必须与密度的平方根成反比,以确保保守“漩涡”能量。后者包括阳性动力学,压缩,磁性和涡旋贡献,从而导致腹膜植物的先验界限。到2流体等离子体的扩展涉及离子和电子速度方程中的磁性“旋转”项,以及在安培定律中的电流添加的螺线管添加。使用旋转能量作为哈密顿式的旋转能量开发了汉密尔顿 - 波森支架的配方。我们还建立了旋转正则化的最小属性。显示漩涡速度场可传输涡流和磁通管以及带有RHO和B/RHO的磁力磁场,从而概括了Kelvin-Helmholtz和Alfven定理。稳定的正则方程用于建模旋转涡流,MHD捏和涡流板。我们的正则化可以促进数值模拟以及3D中涡流和当前细丝的统计处理。最后,我们简要描述了可压缩流中冲击样奇点的保守正规化,将KDV和非线性Schrodinger方程推广到3D中气体的绝热动力学。

Ideal systems of equations such as Euler and MHD may develop singular structures like shocks, vortex/current sheets. Among these, vortical singularities arise due to vortex stretching which can lead to unbounded growth of enstrophy. Viscosity and resistivity provide dissipative regularizations of these singularities. In analogy with the dispersive KdV regularization of the 1D inviscid Burgers' equation, we propose a local conservative regularization of ideal 3D compressible flows, MHD and 2-fluid plasmas (with potential applications to high vorticity flows with low dissipation). The regularization involves introducing a vortical `twirl' term lambda^2 w x curl w in the velocity equation. The cut-off length lambda must be inversely proportional to square root of density to ensure the conservation of a `swirl' energy. The latter includes positive kinetic, compressional, magnetic and vortical contributions, thus leading to a priori bounds on enstrophy. The extension to 2-fluid plasmas involves additionally magnetic `twirl' terms in the ion and electron velocity equations and a solenoidal addition to the current in Ampere's law. A Hamiltonian-Poisson bracket formulation is developed using the swirl energy as Hamiltonian. We also establish a minimality property of the twirl regularization. A swirl velocity field is shown to transport vortex and magnetic flux tubes as well as w/rho and B/rho, thus generalizing the Kelvin-Helmholtz and Alfven theorems. The steady regularized equations are used to model a rotating vortex, MHD pinch and vortex sheet. Our regularization could facilitate numerical simulations and a statistical treatment of vortex and current filaments in 3D. Finally, we briefly describe a conservative regularization of shock-like singularities in compressible flow generalizing both the KdV and nonlinear Schrodinger equations to the adiabatic dynamics of a gas in 3D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源