论文标题

图形上的地球几何形状

Geodesic Geometry on Graphs

论文作者

Cizma, Daniel, Linial, Nati

论文摘要

我们研究了地球几何形状的图理论类似物。在图$ g =(v,e)$中,我们考虑了一个路径系统$ \ mathcal {p} = \ {p_ {p_ {u,v} | u,v \ in v \} $,其中$ p_ {u,v} $连接Vertices $ u $ u $和$ v $。该系统是一致的,因为如果顶点$ y,z $在$ p_ {u,v} $中,则它们之间的子路径与$ p_ {u,v} $之间的子路径与$ p_ {y,z} $一致。地图$ w:e \ to(0,\ infty)$被认为会诱导$ \ mathcal {p} $,如果每个$ u,v \ in v $ in v $ p $ p_ {u,v} $是$ w $ geodesic。我们说,如果每种一致的路径系统都是由一些这样的$ W $引起的,则$ G $是可以METRIA的。正如我们所表明的那样,可计算图非常罕见,而存在无限的许多$ 2 $连接的可元图。

We investigate a graph theoretic analog of geodesic geometry. In a graph $G=(V,E)$ we consider a system of paths $\mathcal{P}=\{P_{u,v}|u,v\in V\}$ where $P_{u,v}$ connects vertices $u$ and $v$. This system is consistent in that if vertices $y, z$ are in $P_{u,v}$, then the sub-path of $P_{u,v}$ between them coincides with $P_{y,z}$. A map $w: E\to(0,\infty)$ is said to induce $\mathcal{P}$ if for every $u, v\in V$ the path $P_{u,v}$ is $w$-geodesic. We say that $G$ is metrizable if every consistent path system is induced by some such $w$. As we show, metrizable graphs are very rare, whereas there exist infinitely many $2$-connected metrizable graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源