论文标题

连续非亚伯对称性的晶格模型中的流体动力学

Hydrodynamics in lattice models with continuous non-Abelian symmetries

论文作者

Glorioso, Paolo, Delacrétaz, Luca V., Chen, Xiao, Nandkishore, Rahul M., Lucas, Andrew

论文摘要

我们开发了具有全球连续非亚伯对称性的晶格中多体系统的流体动力学的系统有效现场理论。具有连续非亚伯对称性的模型在物理学上无处不在,在从热核物质到冷原子气体和量子旋转链的各种环境中产生。在每个维度和每个风味对称群体中,低能理论是一组耦合的嘈杂扩散方程。物理学对选择规范或微型典型合奏的独立性在我们的流体动力扩张中表现出来,即使整体选择在准模式光谱中导致明显的转移。我们使用形式主义来解释为什么风味对称性在质上与其他非亚伯保护法(包括角动量和电荷多物)的流体动力学不同。作为我们框架的重要应用,我们研究了经典的一维SU(2) - 易流旋转链中的自旋和能量扩散,包括海森堡模型以及多个概括。我们基于数值模拟和我们有效的现场理论框架进行争论,即在晶格上的不可融合的旋转链表现出常规的自旋扩散,与最近的一些预测,即扩散常数在后期对数的对数生长。我们表明,扩散的明显增强是由于(非亚洲)流体动力波动引起的缓慢平衡引起的。

We develop a systematic effective field theory of hydrodynamics for many-body systems on the lattice with global continuous non-Abelian symmetries. Models with continuous non-Abelian symmetries are ubiquitous in physics, arising in diverse settings ranging from hot nuclear matter to cold atomic gases and quantum spin chains. In every dimension and for every flavor symmetry group, the low energy theory is a set of coupled noisy diffusion equations. Independence of the physics on the choice of canonical or microcanonical ensemble is manifest in our hydrodynamic expansion, even though the ensemble choice causes an apparent shift in quasinormal mode spectra. We use our formalism to explain why flavor symmetry is qualitatively different from hydrodynamics with other non-Abelian conservation laws, including angular momentum and charge multipoles. As a significant application of our framework, we study spin and energy diffusion in classical one-dimensional SU(2)-invariant spin chains, including the Heisenberg model along with multiple generalizations. We argue based on both numerical simulations and our effective field theory framework that non-integrable spin chains on a lattice exhibit conventional spin diffusion, in contrast to some recent predictions that diffusion constants grow logarithmically at late times. We show that the apparent enhancement of diffusion is due to slow equilibration caused by (non-Abelian) hydrodynamic fluctuations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源