论文标题

多保真计算机实验的顺序设计:最大化逐步不确定性的速率

Sequential design of multi-fidelity computer experiments: maximizing the rate of stepwise uncertainty reduction

论文作者

Stroh, Rémi, Bect, Julien, Demeyer, Séverine, Fischer, Nicolas, Marquis, Damien, Vazquez, Emmanuel

论文摘要

本文介绍了(确定性或随机)多保真数值模拟器的实验的顺序设计,即对正在研究的物理现象或系统模拟的准确性提供控制的模拟器。通常,准确的模拟对应于高计算工作,而粗模拟可以以较小的成本获得。在这种情况下,可以合并以几个水平的忠诚度获得的仿真结果,以估算有效的方式(输出的最佳值,输出的最佳值,超过给定阈值的概率...)。为此,我们提出了一种新的贝叶斯顺序策略,称为逐步不确定性降低(MR-SUR)的最大速率,该策略选择了通过最大化预期不确定性降低与模拟成本之间的比率来进行的其他模拟。这种通用策略统一了几种现有方法,并提供了开发新方法的原则方法。我们在几个示例中评估了其性能,包括一个计算密集的消防安全分析问题,其中关注数量是超过建筑物火灾期间的宽容性阈值的概率。

This article deals with the sequential design of experiments for (deterministic or stochastic) multi-fidelity numerical simulators, that is, simulators that offer control over the accuracy of simulation of the physical phenomenon or system under study. Very often, accurate simulations correspond to high computational efforts whereas coarse simulations can be obtained at a smaller cost. In this setting, simulation results obtained at several levels of fidelity can be combined in order to estimate quantities of interest (the optimal value of the output, the probability that the output exceeds a given threshold...) in an efficient manner. To do so, we propose a new Bayesian sequential strategy called Maximal Rate of Stepwise Uncertainty Reduction (MR-SUR), that selects additional simulations to be performed by maximizing the ratio between the expected reduction of uncertainty and the cost of simulation. This generic strategy unifies several existing methods, and provides a principled approach to develop new ones. We assess its performance on several examples, including a computationally intensive problem of fire safety analysis where the quantity of interest is the probability of exceeding a tenability threshold during a building fire.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源