论文标题
$ l \ neq p $时,通用本地变形环
Generic local deformation rings when $l \neq p$
论文作者
论文摘要
我们确定了$ p $ - adic领域的Galois集团的充分通用mod $ l $表示的本地变形环,当$ l \ neq p $时,将它们与双重组中的$ q $ - Q $ stable稳定的半密度共轭类别有关。结果,在驯服案中,我们给出了作者的$ l \ neq p $ breuil--mézard的当地证明。
We determine the local deformation rings of sufficiently generic mod $l$ representations of the Galois group of a $p$-adic field, when $l \neq p$, relating them to the space of $q$-power-stable semisimple conjugacy classes in the dual group. As a consequence we give a local proof of the $l \neq p$ Breuil--Mézard conjecture of the author, in the tame case.