论文标题

瓢虫:Quasi-Monte Carlo采样,用于深层隐式场的3D重建与对称性

Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D Reconstruction with Symmetry

论文作者

Xu, Yifan, Fan, Tianqi, Yuan, Yi, Singh, Gurprit

论文摘要

深层的字段回归方法对来自单视图像的3D重建有效。但是,不同的抽样模式对重建质量的影响并不理解。在这项工作中,我们首先研究了点集差异对网络培训的影响。基于最远的点采样算法,我们提出了一种抽样方案,从理论上讲,该方案可以鼓励更好的概括性能,并导致基于SGD的优化算法的快速收敛。其次,基于对象的反射对称性,我们提出了一种特征融合方法,该方法由于自我观察而导致的问题,这使得很难使用本地图像特征。我们提出的系统瓢虫能够从单个输入图像创建高质量的3D对象重建。我们在大规模的3D数据集(Shapenet)上评估瓢虫,在倒角距离,地球搬运工的距离和联合(IOU)的相交方面表现出了高度竞争的结果。

Deep implicit field regression methods are effective for 3D reconstruction from single-view images. However, the impact of different sampling patterns on the reconstruction quality is not well-understood. In this work, we first study the effect of point set discrepancy on the network training. Based on Farthest Point Sampling algorithm, we propose a sampling scheme that theoretically encourages better generalization performance, and results in fast convergence for SGD-based optimization algorithms. Secondly, based on the reflective symmetry of an object, we propose a feature fusion method that alleviates issues due to self-occlusions which makes it difficult to utilize local image features. Our proposed system Ladybird is able to create high quality 3D object reconstructions from a single input image. We evaluate Ladybird on a large scale 3D dataset (ShapeNet) demonstrating highly competitive results in terms of Chamfer distance, Earth Mover's distance and Intersection Over Union (IoU).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源